Bioinformatics Analysis in \mathbf{R}

Gene Expression Analysis

Ivan G. Costa, Joseph Kuo
Institute for Computational Genomics RWTH University Hospital www.costalab.org

Objective of the course

1 - Give you a overview on the use of $\mathrm{R} /$ bioconductor tools for gene expression analysis

2 - Show a real example with all steps necessary for gene expression analysis (based on arrays and RNA-seq)

Analysis of Gene Expression

adapted from: Amit et al. 2016
1- Which genes are up/down regulated after treatment?

- differential analysis / clustering genes

2 - Which cells are more similar?

- clustering samples / PCA

3 - How to interpret large lists of genes?

- gene ontology enrichment /gene set enrichment analysis (GSEA)

Bioinformatics - Gene Expression Analysis

Bioinformatics - Gene Expression Analysis

Affymetrix Arrays - Example

1 - Array Design

Quantification/Pre-processing

1 - Quantify gene expression values
2 - Quality Control

- remove bad samples

3 - Correct for Experimental artifacts - normalization

Why is QC / Normalization important?

- Systematic errors (array wise)
- labeling efficiency, scanning parameters, reverse transcriptase, batch effects
- Stochastic errors
- cross-hybridization, image processing failure, error on probe sequence (manufacturer defect) (gene wise)
- dust in array, hybridization problems (array wise)

Example of Hybridization Problems

Normalization Principles

1 - Most genes don't change expression -> small/same variance 2 - Arrays are hybridized with the same amount of DNA -> same mean

Scatter Plots - Comparing 2 arrays

Scatter Plots - Comparing 2 arrays

Normalization Results

Application of BetweenArray normalization from limma package

MA Plots

Shows systematic dependence between fluorescence intensities between arrays.

- $M=\log R / G$
- $A=\log \operatorname{sqrt}(R * G)(=1 / 2[\log (R)+\log (G)])$

For Affymetrix/single channel arrays, R is the intensity of the microarray experiment of interest and the G is the intensity of median values of all the arrays

MA Plots

"relative expression" (fold change)

Quantification/Pre-processing - Resume

- Normalization is important to confirm the quality and consistency of data
- Boxplots should also be performed after all steps to assure data standards
- Exclusion of "bad samples" has positive effect on downstream analysis
- In doubt, consult a bioinformatician!

Bioinformatics - Gene Expression Analysis

Differential Expression Analysis

- Identify genes related to a particular condition
- example - van de Laar, et al. 2016, Immunity, 2016.
- We will consider:
- You Sac Macrophages (YS-Mac)
- Fetal Liver Monocytes (FL-MO)
- Bone Marrow Monocytes (BM-MO)
- 4 replicates per condition

Source: van de Laar, et al. 2016, Immunity, 2016.

Differential Expression - Example

Differential Expression - Example

- Fold change analysis - change > |log2(2)|

Problems - Fold change

- Low expression genes are treated equally as high expression genes
- We lose information about the variance from genes
- No statistical significance
- Is the only alternative when no replicate samples are available (not recommended!)

Basic Concepts

Mean vs. variability

T-test

We can use the t-statistic as an indication of differential expression

$$
\mathrm{SE}=\sqrt{\frac{s_{X}^{2}}{n_{X}}+\frac{x_{Y}^{2}}{n_{Y}}} \text { and } s_{X}^{2}=\frac{1}{n_{X}-1} \sum_{i=1}^{n_{X}}\left(X_{i}-\bar{X}\right)^{2} .
$$

where \bar{X} and \bar{Y} are the mean (log) expression values of a gene in each group sample and n_{x} and n_{y} are the number of samples on these groups

Student T-test

Test the hypothesis $H_{0}: X-Y=0$

$$
H_{1}: X-Y \neq 0
$$

We can use the t-student distribution to estimate for which t-statistic values the null hypothesis is rejected.
P-value $=\operatorname{Pr}\left(t\right.$ as extreme or morel $\left.H_{0}\right)$,
t student $\mathrm{pdf}-\mathrm{p}$-value $=0.05$

Examples

Change: HIGH Variance: SMALL

T huge

Change: SMALL Variance: HIGH

$$
T \sim 0
$$

Results - FL-MO vs. BM-MO

Volcano Plot - combine p-value and fold change

Multiple Test Correction

- With a p-value of 0.01 , we expect to make one mistake every 100 tests
- We have 12.626 genes, therefore 126 mistaken from 1046 DE genes.
- To solve this, a multiple test correction method is necessary (i.e. Benjamini-Hochberg)
- It is based on the false discovery rate, i.e. the proportion of false DE genes in your list of DE genes

Filtering

- Higher level analysis are eased by filtering of non-specific genes
- genes that show no expression changes between arrays
- i.e. filter genes with low IQR (interquantile range)

- Affymetrix chips has spike-in control probes
- Should be removed after normalization

Differential Analysis - Conclusions

- Fold-change (alone) -> should be avoided
- For patient samples
- high number of replicates are necessary (>30)
- otherwise - low DE genes replicability
- For model (mouse) experiments
- at least 3 samples (and moderated t-test)
- we can not tell the variance without measuring it!
- All correct for multiple testing! Also, non-specific filtering can help if low number of DE genes is found.

Practical Example

- This data is deposited in the public repository GEO under accession GSE76999
- This can be found at the materials and methods of papers.
- GEO - public database with raw, pre-processed data and experimental details of expression (and other omics) experiments.

Source: van de Laar, et al. 2016, Immunity, 2016.

GEO - van de Laar, et al. 2016

Status
Title

Organism
Experiment type
Summary

Overall design

Public on Mar 01, 2016
Capacity of yolk sac macrophages, fetal liver and adult monocytes to colonize an empty niche and develop into functional tissue resident macrophages
Mus musculus
Expression profiling by array
Tissue-resident macrophages can derive from yolk sac macrophages, fetal liver monocytes or adult bone marrow monocytes. Whether these precursors can give rise to transcriptionally identical alveolar macrophages is unknown. Here, we transferred traceable yolk sac macrophages, fetal liver monocytes, adult bone marrow monocytes or adult alveolar macrophages as a control, into the empty alveolar macrophage niche of neonatal Csf2rb-/- mice. All precursors efficiently colonized the alveolar niche and generated alveolar macrophages that were transcriptionally almost identical, with only 22 genes that could be linked to their origin. Underlining the physiological relevance of our findings, all transfer-derived alveolar macrophages self-maintained within the lungs for up to 1 year and durably prevented alveolar proteinosis. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages.

CD45.1+CD45.2+ yolk sac macrophages, fetal liver monocytes, adult bone marrow monocytes or adult alveolar macrophages from the bronchoalveolar lavage were sorted from wild type CD45.1+CD45.2+ mice of indicated ages. From part of these samples RNA was isolated. The other part was transferred intranasally into the lungs of neonate Csf2rb-/- mice. 6 weeks post-transfer, transfer-derived CD45.1+CD45.2+ alveolar macrophages were sorted from the bronchoalveolar lavage. Wild type CD45.1+CD45.2 alveolar macrophages from the bronchoalveolar lavage of 6 week old mice were sorted as control. 36 samples (arrays) in total. RNA was isolated, amplified with Nugene pico kit, converted to cDNA and then hybridised on Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.

Contributor(s) van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G, Hoffmann E, Beyaert R, Saeys Y, Lambrecht BN, Guilliams M
Citation(s) van de Laar L, Saelens W, De Prijck S, Martens L et al. Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity 2016 Apr 19;44(4):755-68. PMID: 26992565

GEO - van de Laar, et al. 2016

Analyze with GEO2R

Download family	Format	
SOFT formatted family file(s)	SOFT ?	
MINiML formatted family file(s)	MINiML ?	TXT ?

GEO - van de Laar, et al. 2016

Sample GSM2042244
Query DataSets for GSM2042244

Status	Public on Mar 01, 2016
Title	Monocyte extracted from adult (wk6-12) Bone Marrow, biological replicate 1
Sample type	RNA
Source name	Monocyte, extracted from Bone Marrow (BM)
Organism	Mus musculus
Characteristics	strain: C57BL/6 tissue: Bone Marrow age: wk6-12 name of condition
Treatment protocol	not applicable
Growth protocol	Tissues were isolated from the mice at the indicated ages.
Extracted molecule	total RNA
Extraction protocol	Single cell suspensions were prepared by organ digestion (yolk sac and fetal liver) with $1 \mathrm{mg} / \mathrm{ml}$ collagenase A and $10 \mathrm{U} / \mathrm{ml}$ DNA (30 and 5 minutes at 370 C), crushing (bones) or flushing of the lungs (broncholaveolar lavage). 2×104 cells were FACS purified into RLT buffer (Qiagen) containing 10 $\mathrm{ml} / \mathrm{ml}$ 2-mercaptoethanol. RNA was isolated using the RNA isolation kit micro (Qiagen no74034).
Label	biotin
Label protocol	Affymetrix WT Terminal Labeling Kit
Hybridization protocol	Standard Affymetrix protocol. cDNA was hybrised on Affymetrix GeneChip Mouse Gene 1.0 ST Arrays (GPL6246).
Scan protocol	Affymetrix Gene ChIP Scanner 3000 7G
Description	Monocyte extracted from Bone Marrow
Data processing	Data were processed using Bioconductor. Normalisation was done by RMA. MoGene-1_0-st-v1.r4.pgf MoGene-1_0-st-v1.r4.mps

Hands on!

Handout Steps 1,2 and 3

Principal Component Analysis

- method for dimension reduction
- find combination of genes explaining cells with distinct expression
- finding directions with highest variance

Principal Component Analysis

- method for dimension reduction
- find combination of genes explaining cells with distinct expression
- finding directions with highest variance

Principal Component Analysis

- method for dimension reduction
- find combination of genes explaining cells with distinct expression
- finding directions with highest variance

Principal Component Analysis

- method for dimension reduction
- find combination of genes explaining cells with distinct expression
- finding directions with highest variance

Principal Component Analysis

- method for dimension reduction
- find combination of genes explaining cells with distinct expression
- finding directions with highest variance

Gene Expression - PCA Example 1

Can be interpreted as a computational FACs sorting (without knowing the markers)

First 2 PCs on the analysis of 5000 samples from Array Express/EBI

Gene Expression - PCA Example 2

PCA Analysis of van de Leer, 2016 data

First 2 PCs van de Leer, 2016 data

PCA Analysis - Conclusions

- PCA allows an "blind" cell sorting
- only works if variant directions split the groups
- is complementary to clustering
- Weights allow interpretation of relevant variables
- Can also be used for quality check
- samples not fitting to groups
- Alternatives to PCA:
- tSNE - very commonly used in single cell RNA-seq

Clustering / Heatmaps

norm. gene expression

Clustering / Heatmaps

clustering methods: k-means, hierarchical clustering, ...

Distance

For a expression matrix X (genes vs. arrays), measure the distance between expression values of two genes (x_{i} e x_{j})

- Euclidean distance (sensitive to scale)

$$
d\left(x_{i}, x_{j}\right)=\sqrt{\sum_{i=1}^{L}\left(x_{i l}-x_{j l}\right)^{2}}
$$

- Pearson correlation (not sensitive to scale / similarity measure)

$$
d\left(x_{i}, x_{j}\right)=\frac{\sum_{i=1}^{L}\left(x_{i l}-\bar{x}_{i}\right)\left(x_{j l}-\bar{x}_{j}\right)}{\sigma_{i}^{2} \sigma_{j}^{2}}
$$

Distance

Which distance for gene expression?

- example of two genes for 15 cancer patients
absolute expression

Euclidean - not similar
Correlation - similar
z-score normalised expression

Euclidean - similar
Correlation - similar

Hierarchical Clustering

Hierarchical Clustering

Hierarchical Clustering

Distance Matrix

1
1
1

2	3	4	5	
3				
4				
5				\(\left[\begin{array}{ccccc}0 \& \& \& \&

2 \& 0 \& \& \&

6 \& 3 \& 0 \& \&

10 \& 9 \& 7 \& 0 \&

9 \& 8 \& 5 \& 4 \& 0\end{array}\right]\)

Hierarchical Clustering

Distance Matrix

1
1
1
2
2
3
4
5 $\left[\begin{array}{ccccc}0 & & 4 & 5 & \\ 2 & 0 & & & \\ 6 & 3 & 0 & & \\ 10 & 9 & 7 & 0 & \\ 9 & 8 & 5 & 4 & 0\end{array}\right]$

Hierarchical Clustering

Distance Matrix

$$
\begin{aligned}
& \begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array} \\
& \begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{ccccc}
0 & & & & \\
2 & 0 & & & \\
6 & 3 & 0 & & \\
10 & 9 & 7 & 0 & \\
9 & 8 & 5 & 4 & 0
\end{array}\right] \\
& \square \begin{array}{c}
(1,2) \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{llll}
0 & & & \\
3 & 0 & & \\
9 & 7 & 0 & \\
8 & 5 & 4 & 0
\end{array}\right] \\
& d_{(1,2), 3}=\min \left\{d_{1,3}, d_{2,3}\right\}=\min \{6,3\}=3 \\
& d_{(1,2), 4}=\min \left\{d_{1,4}, d_{2,4}\right\}=\min \{10,9\}=9 \\
& d_{(1,2), 5}=\min \left\{d_{1,5}, d_{2,5}\right\}=\min \{9,8\}=8
\end{aligned}
$$

Hierarchical Clustering

Hierarchical Clustering

Hierarchical Clustering

Hierarchical Clustering

Which linkage?

Which distance?

Hierarchical Clustering - Complete Linkage

metric - Pearson correlation (or Euclidean + z transform)

Hierarchical Clustering - Average Linkage

$$
\sum_{\sum_{\infty}^{\infty}}^{\infty} \sum_{\infty}^{\infty} \sum_{\infty}^{\infty} \sum_{\infty}^{\infty} \sum_{\infty}^{\infty} \sum_{i}^{\infty} \sum_{i}^{\infty} \sum_{i}^{\infty} \sum_{i}^{\infty} \sum_{i}^{\infty} \sum_{1}^{\infty} \sum_{1}^{\infty} \sum_{1}^{\infty} \sum_{1}^{\infty}
$$

metric - Pearson correlation (or Euclidean $\boldsymbol{+ z}$ transform)

Hierarchical Clustering - Single Linkage

metric - Pearson correlation (or Euclidean + z transform)

Hierarchical Clustering - Final Results

distance metric - Pearson correlation recommended

Clustering - Resume

- Clustering allow detection of unknown groups in the data
- Classical methods (hierarchical or k-mean) work well in general
- How to choose distance and linkage?
- Pearson or Euclidean (followed by z-transform)
- Heatmaps usually only like nice with ztransform
- How to find number of groups?
- No simple solution!

Functional Analysis

Clustering/Differential Expression (DE) returns lists of hundreds of genes How to functionally characterize these?

Solution 1 - Look at each gene individually
Solution 2 - Relate these genes to annotations from databases

- Gene Ontology, pathways, gene sets, disease ontology, ...

Databases

Manually or automatic curated annotation of genes

Gene Ontology

Controlled vocabulary to describe gene and gene product attributes in any organism

Formed by three ontologies

1. Biological Process (BP)
2. Molecular Function (MF)
3. Celular Component (CC)

Annotation (Organism depend)

- genes are associated to terms manually (literature) or automatically (sequence homology)

Gene Ontology

Gene Ontology

inheritance property

GO Enrichment Analysis

DE analysis results

GO Term

How probable is that 3 up regulated genes are annotated to the GO term?

GO Enrichment Analysis

DE analysis results

YDL093W
YER016W
YNL126W
YKL053W
YJL099W
YDL198C
YCR085W
YBR043C
YDR325W
YCR085W
YBR043C

Statistics:

Fisher's Exact Test

GO Term

	YES.	NO
YES	3	1
NO	8	6421

Enrichment Analysis Tools

For a given gene list:

1. evaluate the the overlap of the list vs. all gene sets i.e. GO terms, pathways, ...
2. Estimate p-value (corrected by multiple testing)
3. Rank gene sets by lowest p-value

G:Profiler

We interface for enrichment analysis with: Gene Ontology, KEGG Pathway and TF binding
http://biit.cs.ut.ee/gprofiler/index.cgi
Check the results for my favorite genes:
Irf8 Id2 Spi1 Klf4 Runx2 Egr1

Gene Set Enrichment Analysis

Perform a functional evaluation of ranking of genes

- i.e all genes ranked by fold change cond. A vs. B

Advantages over "Normal" enrichment analysis:

- do not require previous DE analysis
- works when effects of the experiment are low

GSEA Gene Sets

- GO Terms, KEGG Pathways
- experimentally derived Gene Sets
-DE genes from microarray studies from GEO
- Can be obtained at mysigdb (software.broadinstitute.org/gsea/msigdb/)

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis

For a given gene ranking:

1. evaluate ES score for all gene sets
2. estimate p-value(corrected)
3. rank gene sets by lowest pvalue

Hands on!

Handout Step 4 to 7

Integrative Analysis - ImmGen

- ImmGen - expression data of immune cells under standardized conditions

- How do cells from van de Leer, 2016 compares to monocyte/macrophages from ImmGenn?
- we obtained/pre-processed ImmGen data (V 1) from GEO (GSE15907)

Integrative Analysis - Problem

- Batch Effects - Arrays from distinct lab tends to cluster together

See: Leek JT,.... (2016). sva: Surrogate Variable Analysis. R package version 3.22.0.

Integrative Analysis - Problem

- Batch Effects - Arrays from distinct lab tends to cluster together

ImmGenn

See: Leek JT,.... (2016). sva: Surrogate Variable Analysis. R package version 3.22.0.

Integrative Analysis - Problem

- Batch Effects - Arrays from distinct lab tends to cluster together

See: Leek JT,.... (2016). sva: Surrogate Variable Analysis. R package version 3.22.0.

Integrative Analysis - PCA After Combat

- Solution - Batch effect removal with COMBAT
- annotation of your data: tissue of origin, cell type, experimental batches

Hands on! Handout Step 7

Bioinformatics - Gene Expression Analysis

Afternoon Exercise

- Analyse gene expression data (steps 1-7 of handout) of the following paper:
- Spence JR, Mayhew CN, Rankin SA, Kuhar MF et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011 Feb 3;470(7332):105-9.
- Try to get answers to the following questions with your analysis:
- Are the stem cells and induced pluripotent cells the same?
- If not, what are the reasons, i.e. does GO analysis indicate functional differences between these cells?

