Bioinformatics Analysis in R

Gene Expression Analysis
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http://www.costalab.org

Objective of the course

1 - Give you a overview on the use of R/bioconductor
tools for gene expression analysis

2 - Show a real example with all steps necessary for gene
expression analysis (based on arrays and RNA-seq)
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Analysis of Gene Expression
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1- Which genes are up/down regulated after treatment?

- differential analysis / clustering genes

2 - Which cells are more similar?

- clustering samples / PCA

3 - How to interpret large lists of genes?

- gene ontology enrichment /gene set enrichment analysis (GSEA)
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Bioinformatics - Gene Expression Analysis

array hybridization/
sequencing
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quantification and *
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normalization
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high level analysis . finding relevant genes

and samples
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functional analysis » interpret groups
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Affymetrix Arrays - Example

1 - Array Design
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Quantification/Pre-processing

Array 1

Array 2

|Array 3

Array 1 Array 2 Array 3
Gene 1 100 200 500
Gene 2 3000 5000 10000
Gene 3 50 10 100

1 - Quantify gene expression values

2 - Quality Control
* remove bad samples

3 - Correct for Experimental artifacts
* normalization
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Why is QC / Normalization important?

e Systematic errors (array wise)
- labeling efficiency, scanning parameters, reverse transcriptase,
batch effects
e Stochastic errors
- cross-hybridization, image processing failure, error on probe
sequence (manufacturer defect) (gene wise)
- dust in array, hybridization problems (array wise)

Example of Hybridization Problems




Normalization Principles

1 - Most genes don‘t change expression -> small/same variance
2 - Arrays are hybridized with the same amount of DNA -> same mean

C 15
S
U) 14
n
O
O
L|>j 12
GC) 11
QO
O

9

10 —

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
lllllllllllllllllllllllllllllllllllllllll
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
lllllllllllllllllllllllllllllllllllllllll
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||||||||
|||||||||||||| LI} L e e e e e I e e e o L L D A N R |
|||||||||| ' (] L T T R T T T T S B B ' -
||||||| (] (] [ I I [ R R R ~
' N EE ™ T N AT T T T R
1 LB | | | | L R R A DR D A B . |
|
|
\ -
h -
-
1
'
! , B
| . L ! | " T A
[l f ! | [ [ I 1
| ' ! 1 [
| ' 0 1 ' ' '
Lo :lll: ' .-Ln: + [ 'L: '::III
! 2t ' + | [ + L 4 | +
o + + 1 ot L4
P 1 -Ll
" " " 4 4 A
" Lo+ ' Ly "
" ' 4
1 4
i o -+
L

LA LLLLLLLLLLLLLLIL S S S SSSSSSSSSSSSS5S=5=

Arrays

Institute for
Computational Genomics

Ll

01011c

1010010070

0 outlier
whisker
75th percentile
—+ — mean
median

25th percentile

whisker

RWTH




Scatter Plots - Comparing 2 arrays
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Scatter Plots - Comparing 2 arrays
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Normalization Results

Application of BetweenArray normalization from limma package
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MA Plots

Shows systematic dependence between fluorescence
intensities between arrays.

* M =log R/G
* A =log sqrt(R*G) (= 1/2 [log(R)+log(G)])

For Affymetrix/single channel arrays, R is the intensity of
the microarray experiment of interest and the G is the
intensity of median values of all the arrays



MA Plots

“relative expression” (fold change)
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Quantification/Pre-processing - Resume

e Normalization is important to confirm the quality
and consistency of data

e Boxplots should also be performed after all steps
to assure data standards

e Exclusion of “"bad samples” has positive effect on
downstream analysis

¢ In doubt, consult a bioinformatician!

Computational Genomics



Bioinformatics - Gene Expression Analysis

array hybridization/
sequencing

A 4

quantification and Removal of experimental normalization
pre-processing * artifacts/bad samples

finding relevant genes PCA, clustering,
and samples differential expression

high level analysis
enrichment analysis

functional analysis > th';pr::;gm“ps GSEA
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Differential Expression Analysis

e Identify genes related to a

particular condition
e example - van de Laar, et al.
2016, Immunity, 2016.

e We will consider:

e You Sac Macrophages (YS-Mac)
e Fetal Liver Monocytes (FL-MO)

e Bone Marrow Monocytes (BM-MO)

- 4 replicates per condition

YS-Mac = AM
‘7 ®
FL-MO AM

Ceeeee

Co-98-2
% P

AM

Ceeeee

Tissue Mac
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Source: van de Laar, et al. 2016, Immunity, 2016.
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Differential Expression - Example

N
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A=log(FL-MO)+log(BM-MO)
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Differential Expression - Example

* Fold change analysis - change > |log2(2)|
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Problems - Fold change

* Low expression genes are treated equally as high
expression genes

* We lose information about the variance from genes
* No statistical significance

* Is the only alternative when no replicate samples
are available (not recommended!)

Institute for Rm
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Basic Concepts

Mean vs. variability

v " ~3.4
L J

BM-MO : . BM-MO
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T-test

We can use the t-statistic as an indication of
differential expression

- - difference between means
 SE <« |variance
2 2 Ny
h) X 1 -
SE=4/—>+—" and s = » (X — Xy
Ny ny Ny — 1

where X and Y are the mean (log) expression values of a gene
in each group sample and n, and n, are the number of samples

on these groups
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Student T-test

Test the hypothesis Hy: X -Y= 0
H;: X -Y=#0

t student pdf — p-value =0.05

04

We can use the t-student

distribution to estimate for
which t-statistic values the
null hypothesis is rejected.

o
w

Probability Density
2 o

P-value = Pr(t as extreme ormorelHp), |~ = * = =~ * =~ = =~ = « =
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Examples

Change: HIGH Change: SMALL
Variance: SMALL Variance: HIGH
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Results - FL-MO vs. BM-MO

Volcano Plot - combine p-value and fold change
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Multiple Test Correction

* With a p-value of 0.01, we expect to make one
mistake every 100 tests

* We have 12.626 genes, therefore 126 mistaken
from 1046 DE genes.

* To solve this, a multiple test correction method is
necessary (i.e. Benjamini-Hochberg)

— It is based on the false discovery rate, i.e. the proportion
of false DE genes in your list of DE genes



Filtering

* Higher level analysis are eased by filtering of

non-specific genes

— genes that show no expression
changes between arrays

—i.e. filter genes with low IQR

(interquantile range)

FL

34— third quartile

t— first quartile

_ I 1 |wor
median ——-

 Affymetrix chips has spike-in control probes
- Should be removed after normalization



Differential Analysis - Conclusions

 Fold-change (alone) -> should be avoided

 For patient samples
* high number of replicates are necessary (>30)
 otherwise - low DE genes replicability

* For model (mouse) experiments
+ at least 3 samples (and moderated t-test)
« we can not tell the variance without measuring it!

All correct for multiple testing! Also, non-specific
filtering can help if low number of DE genes is found.




Practical Example

e This data is deposited in the
public repository GEO
under accession GSE76999

e This can be found at the
materials and methods of
papers.

e GEO - public database with
raw, pre-processed data
and experimental details
of expression (and other
omics) experiments.



https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76999

GEO -

van de Laar, et al. 2016

Series GSE76999

Status
Title

Organism

Experiment type
Summary

Overall design

Contributor(s)

Citation(s)

Query DataSets for GSE76999

Public on Mar 01, 2016

Capacity of yolk sac macrophages, fetal liver and adult monocytes to colonize
an empty niche and develop into functional tissue resident macrophages

Mus musculus

Expression profiling by array

Tissue-resident macrophages can derive from yolk sac macrophages, fetal liver
monocytes or adult bone marrow monocytes. Whether these precursors can
give rise to transcriptionally identical alveolar macrophages is unknown. Here,
we transferred traceable yolk sac macrophages, fetal liver monocytes, adult
bone marrow monocytes or adult alveolar macrophages as a control, into the
empty alveolar macrophage niche of neonatal Csf2rb-/- mice. All precursors
efficiently colonized the alveolar niche and generated alveolar macrophages
that were transcriptionally almost identical, with only 22 genes that could be
linked to their origin. Underlining the physiological relevance of our findings, all
transfer-derived alveolar macrophages self-maintained within the lungs for up
to 1 year and durably prevented alveolar proteinosis. Thus, precursor origin
does not affect the development of functional self-maintaining tissue-resident
macrophages.

CD45.1+CD45.2+ yolk sac macrophages, fetal liver monocytes, adult bone
marrow monocytes or adult alveolar macrophages from the bronchoalveolar
lavage were sorted from wild type CD45.1+CD45.2+ mice of indicated ages.
From part of these samples RNA was isolated. The other part was transferred
intranasally into the lungs of neonate Csf2rb-/- mice. 6 weeks post-transfer,
transfer-derived CD45.1+CD45.2+ alveolar macrophages were sorted from the
bronchoalveolar lavage. Wild type CD45.1+CD45.2 alveolar macrophages from
the bronchoalveolar lavage of 6 week old mice were sorted as control. 36
samples (arrays) in total. RNA was isolated, amplified with Nugene pico kit,
converted to cDNA and then hybridised on Affymetrix GeneChip Mouse Gene
1.0 ST Arrays.

van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G,
Hoffmann E, Beyaert R, Saeys Y, Lambrecht BN, Guilliams M

van de Laar L, Saelens W, De Prijck S, Martens L et al. Yolk Sac Macrophages,
Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop
into Functional Tissue-Resident Macrophages. Immunity 2016 Apr
19;44(4):755-68. PMID: 26992565

GEO ID

'\

Information
about the study
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GEO - van de Laar, et al. 2016

Submission date Jan 20, 2016
Last update date Jul 13, 2018

Contact name Martin Guilliams

Organization name VIB-University of Ghent

Department VIB Inflammation Research Center

Street address Technologiepark 927

City Ghent

ZIP/Postal code 9000

Country Belgium

Platforms (1) GPL6246 [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript
(gene) version]

Samples (36) GSM2042244 Monocyte extracted from adult (wk6-12) Bone Marrow,

# More... biological replicate 1 array used

GSM2042245 Monocyte extracted from adult (wk6-12) Bone Marrow,

biological replicate 2
GSM2042246 Monocyte extracted from adult (wk6-12) Bone Marrow, \
biological replicate 3

Relations SI n g Ie
BioProject PRINA309234 expe rl ments
Analyze with GEO2R
Download family Format
SOFT formatted family file(s) SOFT 2
MINiML formatted family file(s) MINIML 2 raw data
Series Matrix File(s) TXT 2 /
Supplementary file Size Download File e/resource
pp ry typ omics|IRNNTTH

GSE76999_RAW.tar

~_ . a0 _ __a_ £



GEO - van de Laar, et al. 2016

Sample GSM2042244

Status
Title
Sample type

Source name
Organism
Characteristics

Treatment protocol
Growth protocol

Extracted molecule
Extraction protocol

Label
Label protocol

Query DataSets for GSM2042244

Public on Mar 01, 2016
Monocyte extracted from adult (wk6-12) Bone Marrow, biological replicate
RNA

ID of array

Monocyte, extracted from Bone Marrow (BM)

Mus musculus

strain: C57BL/6

tissue: Bone Marrow 11
age: Wk6-12 name of condition
not applicable

Tissues were isolated from the mice at the indicated ages.

total RNA

Single cell suspensions were prepared by organ digestion (yolk sac and fetal detalls
liver) with 1 mg/ml collagenase A and 10 U/ml DNA (30 and 5 minutes at

370C), crushing (bones) or flushing of the lungs (broncholaveolar lavage).

2x104 cells were FACS purified into RLT buffer (Qiagen) containing 10

mil/ml 2-mercaptoethanol. RNA was isolated using the RNA isolation kit

micro (Qiagen no74034).

biotin

Affymetrix WT Terminal Labeling Kit

Hybridization protocol Standard Affymetrix protocol. cDNA was hybrised on Affymetrix GeneChip

Scan protocol
Description
Data processing

Mouse Gene 1.0 ST Arrays (GPL6246).
Affymetrix Gene ChIP Scanner 3000 7G
Monocyte extracted from Bone Marrow

Data were processed using Bioconductor. Normalisation was done by RMA. —
MoGene-1_0-st-v1.r4.pgf
MoGene-1_0-st-v1.r4.mps

Institute for RW'I'H
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Hands on!

Handout Steps 1,2 and 3



Principal Component Analysis

 method for dimension reduction
e find combination of genes explaining cells with distinct
expression

e finding directions with highest variance

Gene 2 .
( ....
o °
.-::
o Gene 1
o®®

® o o

. .

[ ]

Recommended reading: Institute for RWTH
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Ringner M., Nature Biotechnology 26, 303 - 304 (2008) 0101101 | img A
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Principal Component Analysis

 method for dimension reduction
e find combination of genes explaining cells with distinct
expression

e finding directions with highest variance

Recommended reading: Institute for RWTH

Computational Genomics

Ringner M., Nature Biotechnology 26, 303 - 304 (2008) 0101101 | img A

1010010070



Principal Component Analysis

 method for dimension reduction
e find combination of genes explaining cells with distinct
expression

e finding directions with highest variance

Recommended reading: Institute for RWTH

Computational Genomics

Ringner M., Nature Biotechnology 26, 303 - 304 (2008) 0101101 | img A
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Principal Component Analysis

* method for dimension reduction

e find combination of genes explaining cells with distinct
expression

e finding directions with highest variance
PC2

| . ° ® >
el * PCA1
.. P
° ®
Transform U P
Recommended reading: Institute for | R‘NT“
R|ngner M., Nature BIOteChnO/OQy 26, 303 - 304 (2008) Computational Genomics
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Principal Component Analysis

 method for dimension reduction
e find combination of genes explaining cells with distinct
expression
e finding directions with highest variance
PC2
Gene 2

PC1
©
Transform ‘e |. *° Gene1
Recommended reading: Institute for RWTH

Computational Genomics

Ringner M., Nature Biotechnology 26, 303 - 304 (2008) 0101101 | img A
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Gene Expression - PCA Example 1

Can be interpreted as a computational FACs sorting (without

knowing the markers)

O
O
O
O

/N

Malignancy axis

Hematopoietic system
Other

Connective tissue
Incompletely differentiated

Hematopoietic axis

A\

Malignancy axis

B Normal

B Disease
O Neoplasm
Cell line

Vv

Hematopoietic axis

First 2 PCs on the analysis of 5000 samples from Array Express/EBI

Institute for Rm
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Gene Expression - PCA Example 2

PCA Analysis of van de Leer, 2016 data

® BM-MOs ® FL-MOs e YS-Macs

PC2
0
|

PC1

First 2 PCs van de Leer, 2016 data

Institute for Rm
Computational Genomics
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PCA Analysis - Conclusions

 PCA allows an “blind” cell sorting
* only works if variant directions split the groups
* is complementary to clustering

 Weights allow interpretation of relevant
variables

e Can also be used for quality check
 samples not fitting to groups
e Alternatives to PCA:
e tSNE - very commonly used in single cell
RNA-seq



Clustering / Heatmaps

Samples norm. gene
expression

-2 0 2

Genes
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Clustering / Heatmaps

Samples Samples norm. gene
expression

-2 0 2

Cluster 1

clustering

Genes

Cluster 4 Cluster 3 Cluster 2

clustering methods: k-means, hierarchical clustering, ...

RWTH
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Distance

For a expression matrix X (genes vs. arrays),
measure the distance between expression values
of two genes (x; e x)

. Euclidean distance (sensitive to scale)

d(xiaxj) = \/2 ('xil _sz)2

. Pearson correlation (not sensitive to scale /
similarity measure)

i(xil _)_Ci)(le _)_Cj)
d(x;,x;)="=

2 2
0,0,

Institute for Rm
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Distance

Which distance for gene expression?
- example of two genes for 15 cancer patients

(&)
1

absolute expression z-score normalised expression
Gen? A

.g 10 i g E Xii = M

7)) 4 8 0 ' 7 =

o 1 A N -2 o;

; \

L

A\

Euclidean - not similar
Correlation - similar

Euclidean - similar
Correlation - similar

Institute for Rm
Computational Genomics
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Hierarchical Clustering

. Botton up method

. Starting with a distance
(similarity) matrix and each

|

% object as a group
&b A Repeat:
é — Joint two most
5 A A -
A e o o060 similar groups
. Until the dendrogram has
Genes only one group

Institute for Rm
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Hierarchical Clustering

Single-Linkage

* Join two groups
where two examples
are close

*  Find groups with
linear shapes

..........
. .
.....

B

Gene 2

Institute for Rm
Computational Genomics
1



Hierarchical Clustering

Distance Matrix

1 2 3 45
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Hierarchical Clustering

Distance Matrix

1 2 3 45
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Hierarchical Clustering

Distance Matrix

2345 12) 3 4 5
Lo 1.2)[0 ]
22 0 :> 2 |3 o
316 30 | 419 7 0
4010 9 7 0

518 5 4 0
509 8 54 0 - -

d., ,=min{d ,,d, } =min{6,3} =3
d.,,=min{d ,,d,,}=min{109}=9
d., s=min{d .d, ;}=min{9,8} =8

OO @
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Hierarchical Clustering

1 23 45
| Fo i 12) 3 45 123) 4 5
12)[0
(123)
2120 313 0
20 s 70 2RTEE
518 5 4 0
519 85 4 0 : -

d(1,2.3)4 = min{d (12),4° d,,}=min{9,7} =7

do3s =min{d, s.d; s} =min{8,5} =5

i
- %

RWTH
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Hierarchical Clustering

W AW N =

d(1,2,3),(4,5)

= mln{d(l,z,s),4 vd(l,2,3),5 b=5

2345 12 3 4 5
0 120 ]
20 :> 3 (3 0
6 30 | 419 7 0
0 9 7 0

518 5 4
9 8 5 4 0] .

(1,23) 4 5
(1,2,3)| 0

4
5

7 0
5 4 0

Institute for
Computational Genomics

010110110
10100100%

w4

OO @

RWTH



Hierarchical Clustering

Gene 2

Single-Linkage

. Groups with closest genes

. linear shapes

Complete-Linkage

. Closest groups with more far
genes

. Compact clusters

Average Linkage

. Groups with closest
centroids (middle)

. QOutlier robust

Institute for Rm
Computational Genomics
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Hierarchical Clustering

Which linkage?

Which distance?

Computational Genomics



Hierarchical Clustering - Complete Linkage

Color Key

-2 01 2
Row Z-Score

FL_MOs
FL_MOs
FL_MOs

YS Macs
YS Macs
YS Macs
YS Macs

FL_MOs

metric - Pearson correlation (or Euclidean + z transform)
RWNTH
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Hierarchical Clustering - Average Linkage

Color Key

!

======EEEEEEE—-—-—-—!!!!!!!
-2 01 2 —
Row Z-Score $ﬁ
- —— —— —
—
— —
F -
——— = =E
ey S——
=
w w ) ) @ @ @ 9 v o v o
(] (W] (] ]
gI gI %I gI E| E| E| 2| gI gI gI gI
- — - —
zzazydederana

metric - Pearson correlation (or Euclidean + z transform)

RWTH
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Hierarchical Clustering - Single Linkage

\H

Color Key

-2 01 2
Row Z-Score

%

i
i

EE———;_—__—
———
e
L e —
_ — — E
—_— f— —
—_— # _
L e s— S —
——————— J— —
—_— —_____ m—

H

|

:”
4

BM_MOs
BM_MOs
FL_MOs
FL_MOs

BM MOs
BM_MOs
YS Macs
YS Macs
YS Macs
YS Macs
FL MOs
FL MOs

metric - Pearson correlation (or Euclidean + z transform)

RWTH
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Hierarchical Clustering - Final Results

Color Key

-2 0 1 2
Row Z-Score

— — High YS Mac

~ - |High YS Mac &
— — FL Moc.

- High Monocytes

~——  High BM-Moc.

(9]
Q
©
=

P
distance metric - Pearson

YS-Macs
YS-Macs
YS-Macs
FL-MOs
FL-MOs
FL-MOs
M-MOs
BM-MOs
BM-MOs
BM-MOs

¢ FL-MOs

orrelation recommended

Institute for Rm
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Clustering - Resume

 Clustering allow detection of unknown groups in
the data

 Classical methods (hierarchical or k-mean) work
well in general

* How to choose distance and linkage?
* Pearson or Euclidean (followed by z-transform)
* Heatmaps usually only like nice with z-

transform

* How to find number of groups?

* No simple solution!

Institute for Rm

Computational Genomics



Functional Analysis

Clustering/Differential Expression (DE) returns lists of
hundreds of genes How to functionally characterize
these?

Solution 1 - Look at each gene individually

Solution 2 - Relate these genes to annotations from
databases

- Gene Ontology, pathways, gene sets, disease
ontology, ...



Databases

Manually or automatic curated annotation of genes

4 N\

Pathways

=
o

BIOC/\RT/\

S——
—

/ Experimental
=1 MSigDB

6 Molecular Signatures
s = Database

o

\

-
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Gene Ontology

Controlled vocabulary to describe gene and gene product
attributes in any organism

Formed by three ontologies

1. Biological Process (BP)
2. Molecular Function (MF)
3. Celular Component (CC)

Annotation (Organism depend)
- genes are associated to terms manually (literature) or
automatically (sequence homology)

Institute for Rm

Computational Genomics



Gene Ontology
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Gene Ontology
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GO Enrichment Analysis

DE analysis results GO Term
7
: ; e
Ty c
o)) (]
O
S = regulation of
© < iellular process
= o
O =
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How probable is that 3 up regulated genes are annotated
to the GO term?
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GO Enrichment Analysis

DE analysis results
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Statistics:

Fisher's Exact Test

Up-regulated

GO Term

regulation of

iellular process

GO Term Annotation
YES. NO
YES 3 1
NO 8 6421
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Enrichment Analysis Tools

For a given gene list:

1. evaluate the the overlap of the list vs. all gene sets
l.e. GO terms, pathways, ...

2. Estimate p-value (corrected by multiple testing)

3. Rank gene sets by lowest p-value



G:Profiler

We interface for enrichment analysis with:
Gene Ontology, KEGG Pathway and TF binding

http://biit.cs.ut.ee/gprofiler/index.cqgi
Check the results for my favorite genes:

Irf8 1d2 Spi1 Kif4 Runx2 Egr1

Computational Genomics



Gene Set Enrichment Analysis

Perform a functional evaluation of ranking of genes
- I.e all genes ranked by fold change cond. Avs. B

Advantages over “Normal” enrichment analysis:
- do not require previous DE analysis
- works when effects of the experiment are low

GSEA Gene Sets
- GO Terms, KEGG Pathways
- experimentally derived Gene Sets
- DE genes from microarray studies from GEO
~ Can be obtained at mysigdb
(software.broadinstitute.org/gsea/msigdb/)

. . Institute for
http://www.broadinstitute.org/gsea Computational Genomics

111111 Y
0000000000
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http://software.broadinstitute.org/gsea/msigdb/

Gene Set Enrichment Analysis

Gene
Expression

A B
I  GenesetS

Fold qhar-lge-r'an-ked- genes
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Gene Set Enrichment Analysis

Gene
Expression

Fold change ranked_ genes

— Gene set S ( |

Leading edge subset

/\5 Gene set S

)

.

Correlation with Phenotype

=

Random Walk

Maximum deviation

Gene List Rank

from zero provides the

enrichment score ES(S)
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Gene Set Enrichment Analysis

For a given gene ranking:

1. evaluate ES score for all
gene sets

2. estimate p-value(corrected)

3. rank gene sets by lowest p-
value

http://www.broadinstitute.org/gsea

(A) Enrichment plot: MOOTHA_VOXPHOS
0.7

~ 06
(%)

W5l
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§ 0.4 “;‘
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502/ up regulated

& 0.11]

MgH-SA 24h
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€S
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JILLL

AgH (positively correlated)
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(B) Enrichment plot: CELLCYCLE
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negative ES

‘.. down regulated genes
E .04/ f
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Hands on!

Handout Step 4 to 7



Integrative Analysis - ImmGen

e ImmGen - expression data of immune cells under
standardized conditions

e How do cells from van de
Leer, 2016 compares to
monocyte/macrophages
from ImmGenn?

e we obtained/pre-processed
ImmGen data (v1) from
GEO (GSE15907)

LLLLL
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Integrative Analysis - Problem

e Batch Effects - Arrays from distinct lab tends to
cluster together

O _ | Mo.6+2-BL
< ‘Mo.Lu BM-MOs
8 —1 Mo.6+2+.SLN FL-MOsg
. MFEAIlv.Lu
o p—
MF.AT.v2
8 MF.11c-11b+.L
— . 11C— +.LU
| \ MF.480int.LV.Naive
(@)
ql) — YS-Macs
I I I I I
-50 0 50 100 150
See: Leek JT,.... (2016). sva: Surrogate Variable Institute for RWNTH

Computational Genomics
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Integrative Analysis - Problem

e Batch Effects - Arrays from distinct lab tends to
cluster together
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Integrative Analysis - Problem

e Batch Effects - Arrays from distinct lab tends to
cluster together

g __| Mo.6+2-BL
BM-MOs
Y+ Monocytes
8 —1 Mo.6+2+.SLN FL-MOsg
~’ MFEAIv.Lu
o p—
g MF.AT.v2
o o
ANl - MF.11c-11b+.Lu
| \ MF.480int.LV.Naive
. Macrophages
o
L? — YS-Macs

I I I I I
-50 0 50 100 150

See: Leek JT,.... (2016). sva: Surrogate Variable stiwtefor
Analysis. R package version 3.22.0. o ll



Integrative Analysis - PCA After Combat

e Solution - Batch effect removal with COMBAT
e annotation of your data: tissue of origin, cell type,
experimental batches

Hands on! andoutstep7

See: Leek JT,.... (2016). sva: Surrogate Variable Insttute for RWNTH

Computational Genomics

Analysis. R package version 3.22.0. S & ¥ 4



Bioinformatics - Gene Expression Analysis

array hybridization/
sequencing

Y

Removal of experimental

quantification and *
pre-processing artifacts/bad samples

normalization

\4

high level analysis . finding relevant genes

and samples

PCA, clustering,
differential expression

functional analysis » interpret groups

of genes

enrichment analysis
GSEA

Institute for Rm
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Afternoon Exercise

* Analyse gene expression data (steps 1-7 of
handout) of the following paper:

 Spence JR, Mayhew CN, Rankin SA, Kuhar MF et al. Directed
differentiation of human pluripotent stem cells into intestinal tissue in vitro.
Nature 2011 Feb 3;470(7332):105-9.

e Try to get answers to the following questions with your
analysis:
e Are the stem cells and induced pluripotent cells the same?
e If not, what are the reasons, i.e. does GO analysis indicate
functional differences between these cells?

Institute for Rm
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