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Resume

Review basic biological/computational aspects

1. basics of molecular biology
2.basics of sequencing
3. basics bioinformatics problems

* short sequences read alignment

* gene expression quantification

* single cell approaches
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Computational Epigenomics



Cell Differentiation

Hematopoiesis
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Cell Differentiation

Hematopoiesis

Which cells are there?
Which transcription factors controls cell specification?
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Regulatory Control — Transcription Factor Binding
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Regulatory Control — Transcription Factor Binding
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Chromatin, Regulation and Cellular Memory
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Chromatin & Histone Code
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Open Chromatin with ATAC-seq

Tn5 cleavage
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Open Chromatin with ATAC-seq
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Open Chromatin with ATAC-seq
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Open Chromatin with ATAC-seq
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Open Chromatin with ATAC-seq
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Bioinformatics Pipeline / ATAC-seq
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more
aligned reads than expected by chance.

Aligned Reads

Example of a simple peak caller :
1. use a fix window to scan through
the genome and obtain a
distribution of counts per bin
2. define a statistical test to evaluate
if the number of reads in higher
than expected by change

See for an example of a code for a peak caller
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/
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Peak Calling
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Peak Calling
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more
aligned reads than expected by chance.
Aligned Reads

Example of a simple peak caller :
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more
aligned reads than expected by chance.

Aligned Reads

Problems: == [=
- which window size to use? =+

- proper quantification of read counts |unts: 2 4 8
require several further steps: CG bias

correction, duplicated reads, R WS
mappability, fragment size, ... ™
if the number of reads in higher s s
than expected by change a8

Counts
See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/
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Peak calling in ATAC-seq
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- MACS2
- most frequently used

- HMMRATAC

- ATAC-seq specific peak caller
- ignores reads from large fragments / linker cleavage sites

Source: Yan, Genome Biology, 2020.
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Bioinformatics Pipeline / ATAC-seq
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Open chromatin with scATAC-seq

Droplet based scATAC-seq
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Computational Challenges - Single Cell ATAC

Open Chromatin Regions
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Computational Challenges - Single Cell ATAC

Open Chromatin Regions

Gene
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1. High dimension

> 100.000 peaks

2. Extremely sparse
- 98% of zeros

- loss of DNA material
cause dropout events
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Resume / Single cell clustering

- Finding groups of single cells require complex pipeline:
« Cell filtering
« Normalisation
- Artefact removal
- Dimension reduction
* Integration
» Clustering
 Cell annotation / visualisation
* Open points:

- How to deal with sparsity of single cell (scRNA-seq or
scATAC-seq) data?
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