Bioinformatics Lab

Ivan Gesteira Costa, Mingbo Cheng, James Nagai, Mina Shaigan, Martin Manolov Institute for Computational Genomics

Resume

- Review basic biological/computational aspects
 - 1. basics of molecular biology
 - 2. basics of sequencing
 - 3. basics bioinformatics problems
 - short sequences read alignment
 - gene expression quantification
 - single cell approaches
 - computational epigenetic (today)

Computational Epigenomics

Cell Differentiation

Hematopoiesis

Cell Differentiation

Regulatory Control – Transcription Factor Binding

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Regulatory Control – Transcription Factor Binding

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Chromatin, Regulation and Cellular Memory

Adapted from Lodish, B. et al. (2004) 5th ed.

Chromatin & Histone Code

Bioinformatics Pipeline / ATAC-seq

Adapted from Rasmussen: http://www.cbs.dtu.dk/courses/27626/programme.php

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2 4

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Peak calling in ATAC-seq

- MACS2
 - most frequently used
- HMMRATAC
 - ATAC-seq specific peak caller
 - ignores reads from large fragments / linker cleavage sites

Bioinformatics Pipeline / ATAC-seq

Adapted from Rasmussen: http://www.cbs.dtu.dk/courses/27626/programme.php

0101101110100100

Li, ..., Kramann, Costa, Biorvx, https://doi.org/10.1101/865931.

Computational Challenges - Single Cell ATAC

Computational Challenges - Single Cell ATAC

Resume / Single cell clustering

- Finding groups of single cells require complex pipeline:
 - Cell filtering
 - Normalisation
 - Artefact removal
 - Dimension reduction
 - Integration
 - Clustering
 - Cell annotation / visualisation
- Open points:
 - How to deal with sparsity of single cell (scRNA-seq or scATAC-seq) data?

Thank you!

