Bioinformatics Software Lab Introduction to Analysis of Single Cell Sequencing

Ivan Gesteira Costa, Mingbo Cheng, Martin Manolov, James Nagai, Mina Shaigon Institute for Computational Genomics

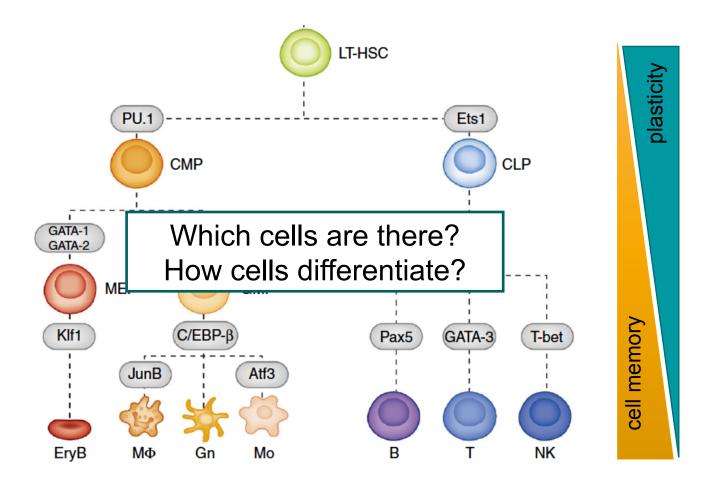
Objectives

- 1. basics of single cell sequencing
- 2. basic bioinformatics/computational problems
 - dimension reduction
 - clustering
 - data integration

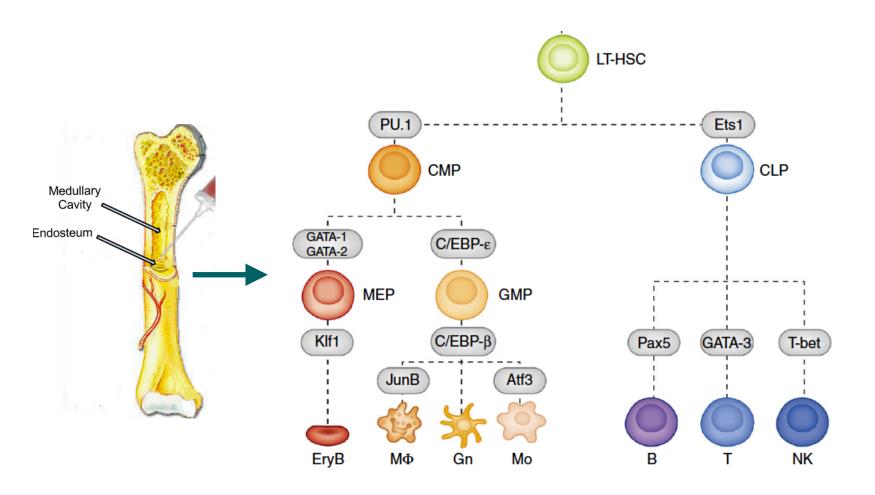
Expression at Single Cell Level

Cell Differentiation

Hematopoiesis

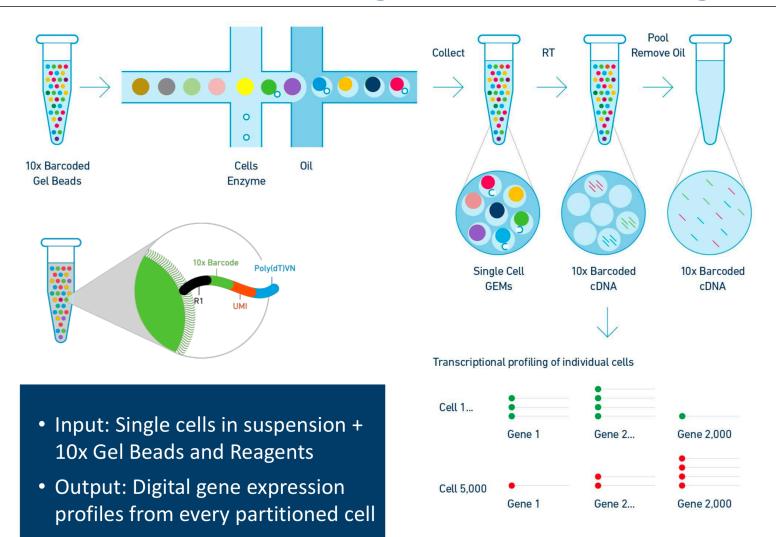


Cell Differentiation

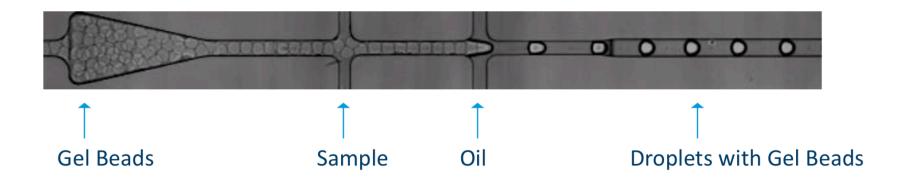


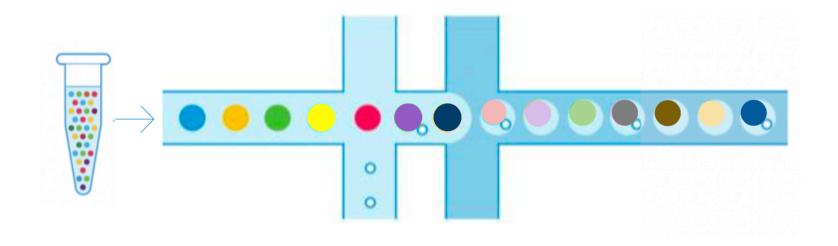
Institute for Computational Genomics 01011011010 UNIVERSITY

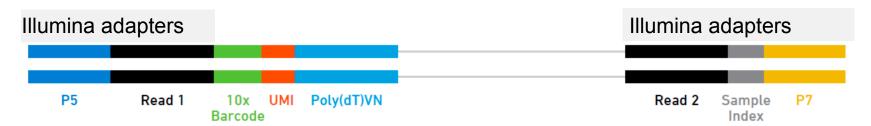
Droplet based RNA single cell sequencing

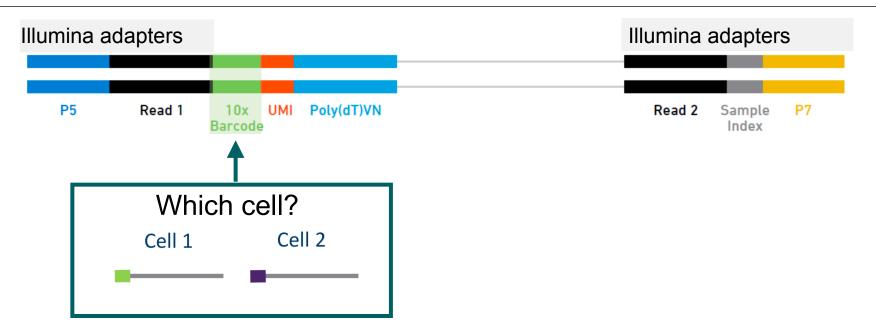


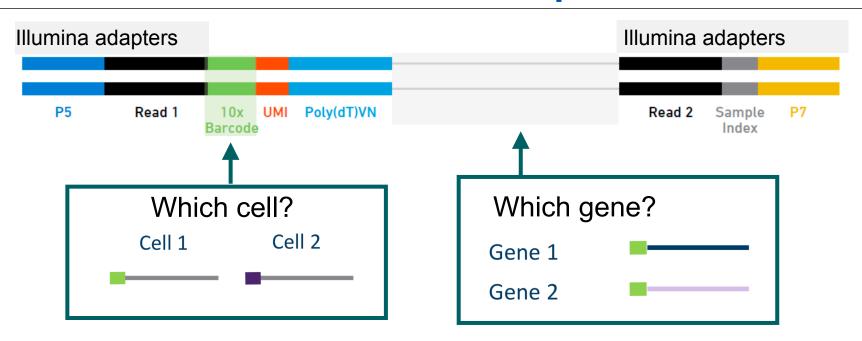
Droplet based RNA single cell sequencing

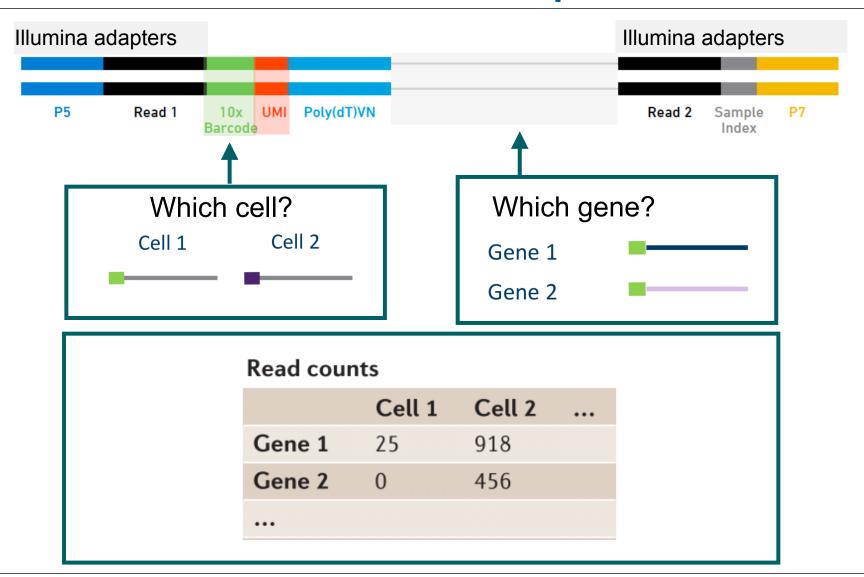




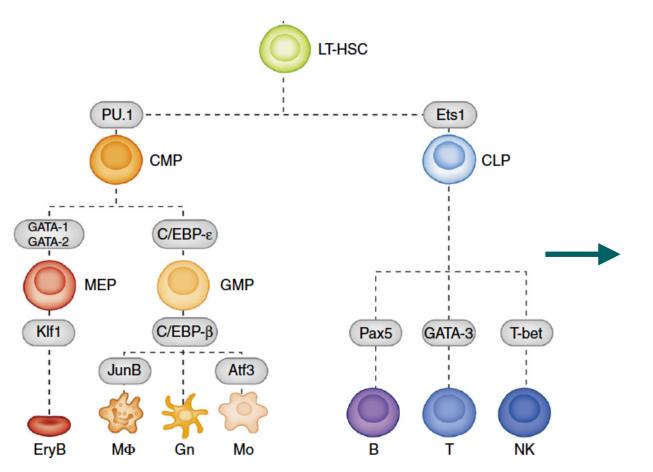








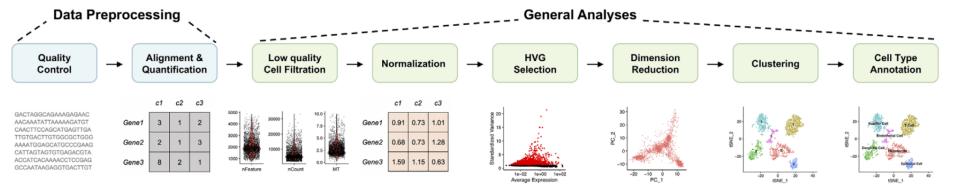
Cell Differentiation & Gene Expression



	Cell 1	Cell 2	
Gene 1	25	918	
Gene 2	0	456	
Gene 3	20	342	
Gene 4	0	214	

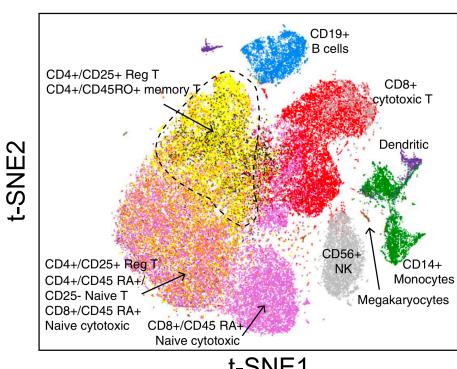
Source: Amit (2016), Nature Immunoloy.

Basics Bioinformatics - single cell RNA-seq



Gene Expression of Lymphoid Cells

PBMCs from Humans

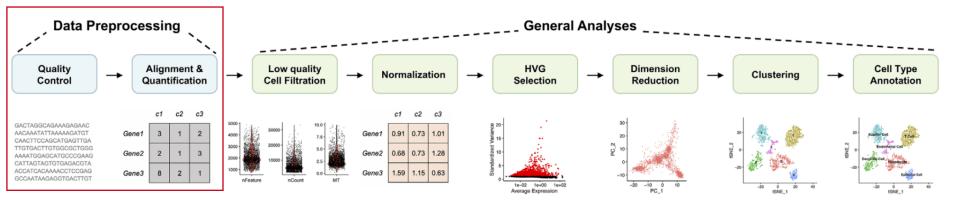


t-SNE1

Single cell RNA-seq from 68k cells

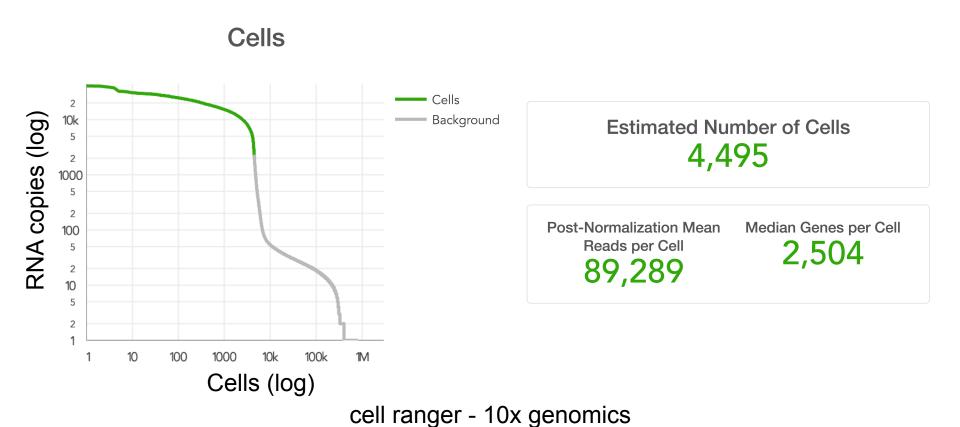
Institute for Computational Genomic

Basics Bioinformatics - single cell RNA-seq

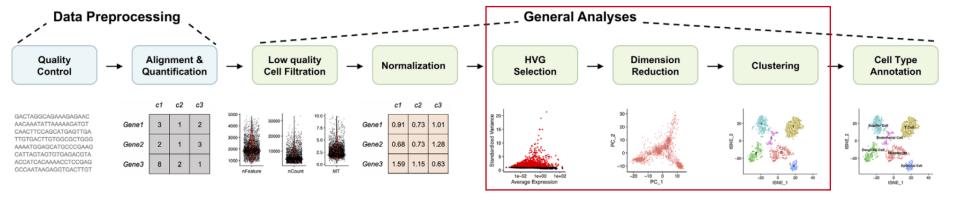


Basics Bioinformatics - Cell Filtering

- 1. sum UMIs (copy of transcripts) per cell
- 2. consider cells with total UMI count > 99th of expected recovered cells

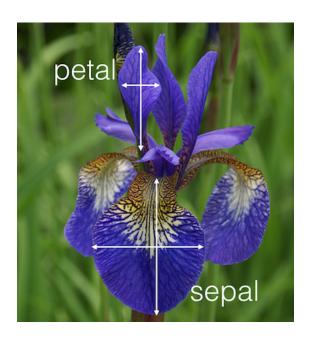


Basics Bioinformatics - single cell RNA-seq



Clustering & Dimension reduction

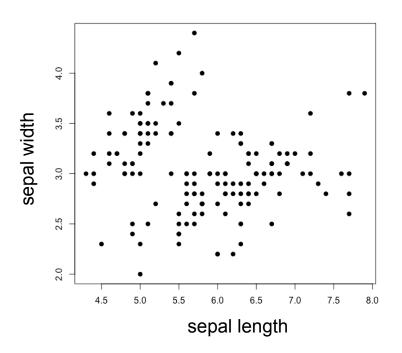
- Given a data description
 - i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types



	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2

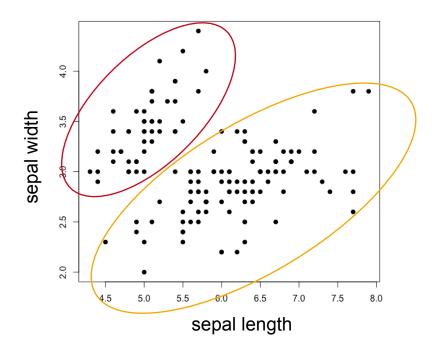
- Given a data description
 - i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2



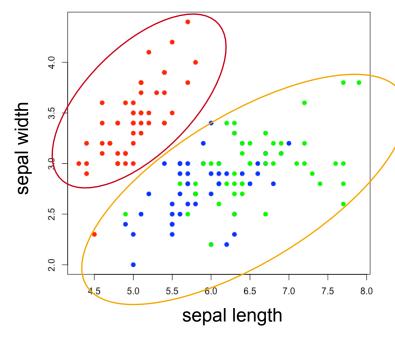
- Given a data description
 - i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2



- Given a data description
 - i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

Iris Setosa



Iris Virginia

Iris Versicolor

Clustering Formalism

For a given data:

 Matrix X with N observations and L dimensions where x_i is a vector representing observation i

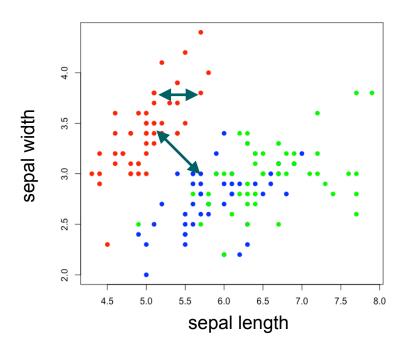
X11	X12	 X1L
X21	X22	 X 2L
X 31	X 32	 X 3L
X _{N1}	X _{N2}	 XNL

find groups of similar observations

• vector $Y = (y_1, ..., y_N)$ where $y_i \in \{1, ..., K\}$ indicates the cluster of observation i

Distance

- A important concept in clustering is a distance (similarity)
 between a pair of objects x_i and x_j
 - Observations of a same group should be close in space

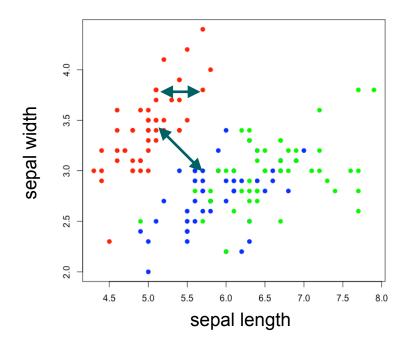


Euclidean distance (sensitive to scale)

$$d(x_i, x_j) = \sqrt{\sum_{l=1}^{L} (x_{il} - x_{jl})^2}$$

Distance

- A important concept in clustering is a distance (similarity)
 between a pair of objects x_i and x_j
 - Observations of a same group should be close in space



Euclidean distance (sensitive to scale)

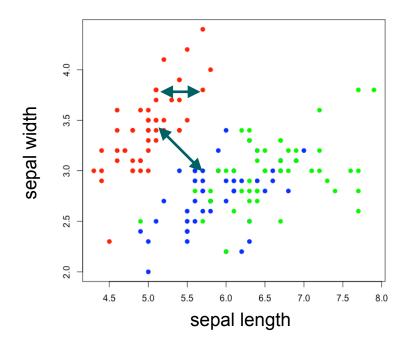
$$d(x_i, x_j) = \sqrt{\sum_{l=1}^{L} (x_{il} - x_{jl})^2}$$

Pearson Correlation (scale insensitive/ similarity)

$$d(x_i, x_j) = \frac{\sum_{l=1}^{L} (x_{il} - \overline{x}_i)(x_{jl} - \overline{x}_j)}{\sigma_i^2 \sigma_j^2}$$

Distance

- A important concept in clustering is a distance (similarity)
 between a pair of objects x_i and x_j
 - Observations of a same group should be close in space



Euclidean distance (sensitive to scale)

$$d(x_i, x_j) = \sqrt{\sum_{l=1}^{L} (x_{il} - x_{jl})^2}$$

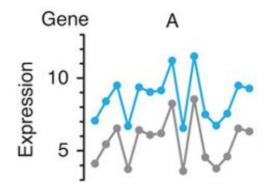
Pearson Correlation (scale insensitive/ similarity)

$$d(x_i, x_j) = \frac{\sum_{l=1}^{L} (x_{il} - \overline{x}_i)(x_{jl} - \overline{x}_j)}{\sigma_i^2 \sigma_j^2}$$

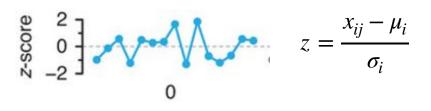
Distance and Scale

- In some problems scale can be important!
 - Similarly in changes are more important / not absolute values.

unscaled data



Euclidean - not similar Correlation - similar z-score normalised data



Euclidean - similar Correlation - similar

Clustering Methods

Hierarchical methods

- Mostly bottom up
- based on distance / simple to interpret
- Partitional methods (k-means or mixture models)
 - Mostly top down
 - Use models of groups, centroids
- Graph based methods
 - Use graph formalisms to represent data:
 - nodes are objects
 - edges weights represent similarities
 - find well connected graphs

K-means

Iterative algorithm using **centroids** as cluster representations

Requires specification of number of clusters (K)

Algorithm:

Start cluster (Y) randomly

Repeat for a number of iterations

- estimate centroid (m_k) for each cluster

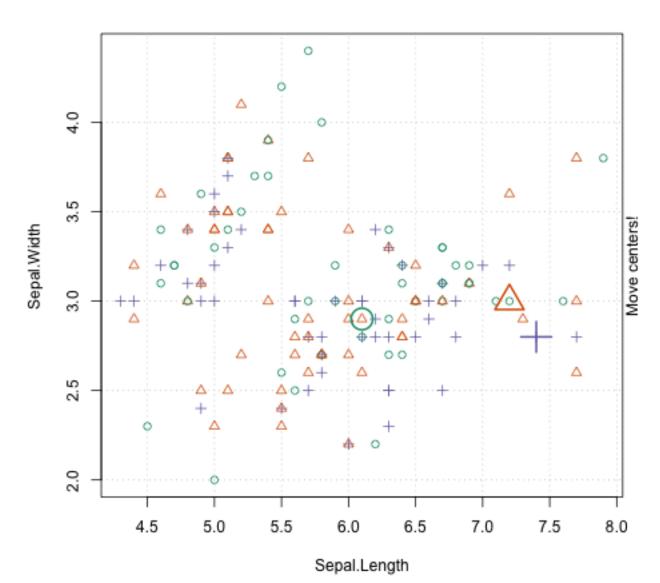
$$m_k = \frac{\sum_{i=1}^{N} 1(y_i = k) x_i}{\sum_{i=1}^{N} 1(y_i = k)}$$

Assign objects to closest centroid:

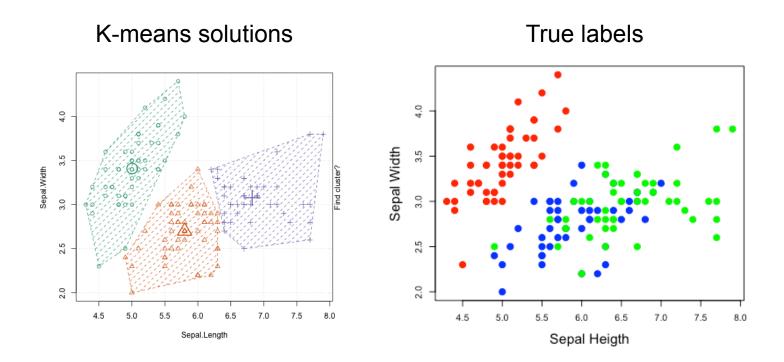
$$y_i = \operatorname{argmin}_k \operatorname{d}(x_i, m_k)$$

^{*} convergence is only guaranteed for Euclidean distance

K-means on Iris

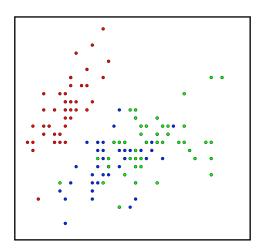


K-means on Iris

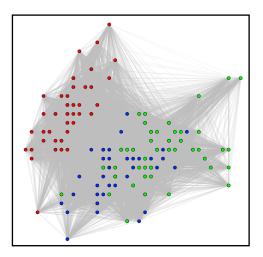


- K-means tends to find spherical clusters
- Sensitive to initialisation

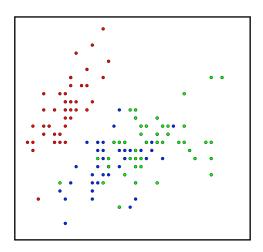
• data points are nodes



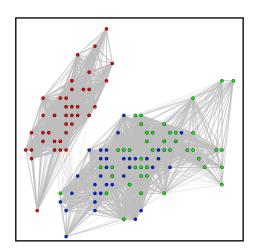
data points are nodes



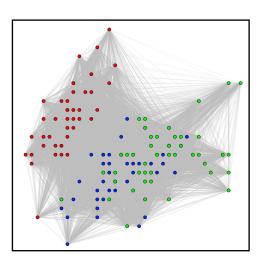
• edges represent similarities



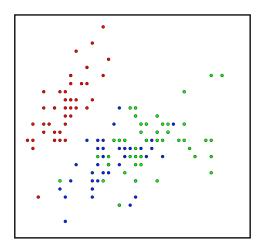
data points are nodes



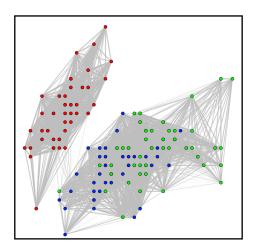
 k-nearest neighbours (KNN) -> sparse graphs



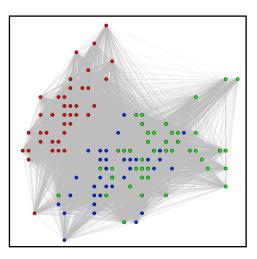
edges represent similarities



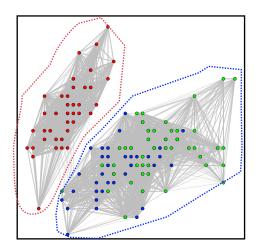
data points are nodes



k-nearest neighbours (KNN) -> sparse graphs

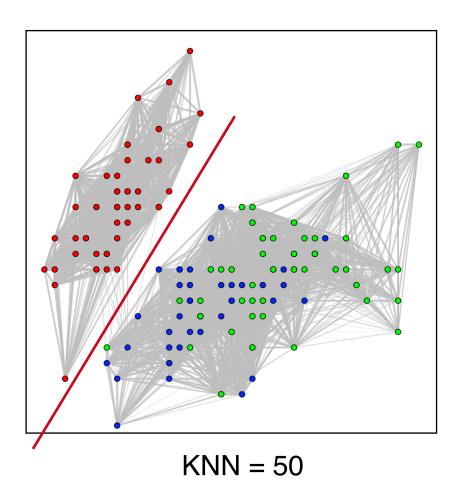


edges represent similarities



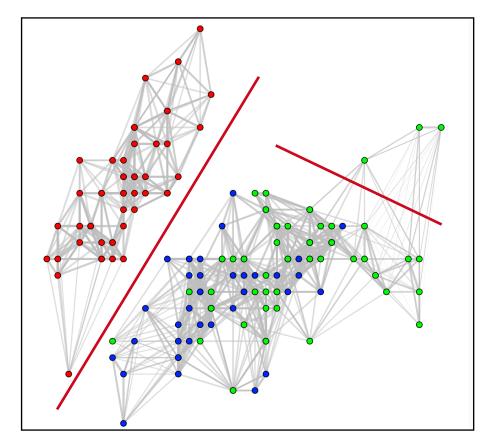
• find well connected sub-graphs

Graph cut



- Cluster by finding cuts in the graph
- Cut cost C(A,B) = sum of edge weights in cut

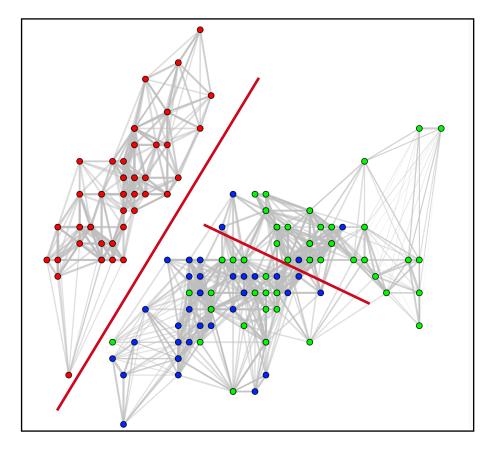
Graph cut



KNN = 10

- Cluster by finding cuts in the graph
- Cut cost C(A,B) = sum of edge weights in cut
 - smallest cuts might not be the best

Normalized graph cut



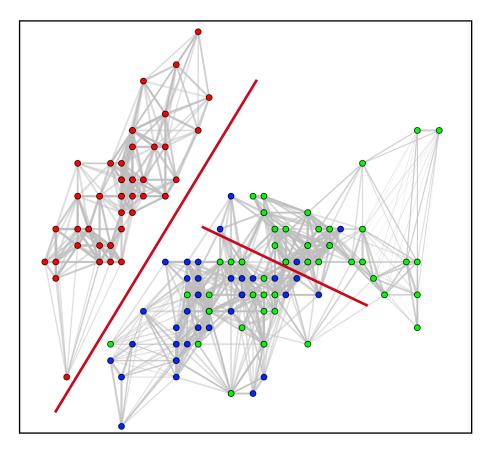
KNN = 10

 Normalized graph cut avoids small graphs

$$normCUT(A,B) = \frac{CUT(A,B)}{VOL(A)} + \frac{CUT(A,B)}{VOL(B)}$$

where VOL(A) is the weight sums of cluster A.

Spectral Clustering



KNN = 10

- Let A be an adjacent matrix of the graph:
 - a_{ij}=1 if nodes i and j are connected
- A laplacian matrix is defined as:

$$L = D - A$$

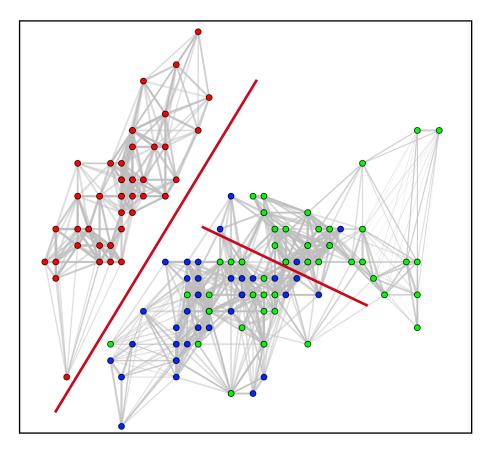
- where D is a diagonal matrix with the number of neighbours of a node
- If we perform a spectral analysis of L*

$$L\lambda = u\lambda$$

- eigenvectors (λ) provides CUTs in the graph
- eigenvalues (*u*) provides the cost of the CUT.
- Perform k-means on lowest K eigenvalues

^{*} see for more details: http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_tutorial.pdf

Spectral Clustering



KNN = 10

- Let A be an adjacent matrix of the graph:
 - a_{ij}=1 if nodes i and j are connected
- A laplacian matrix is defined as:

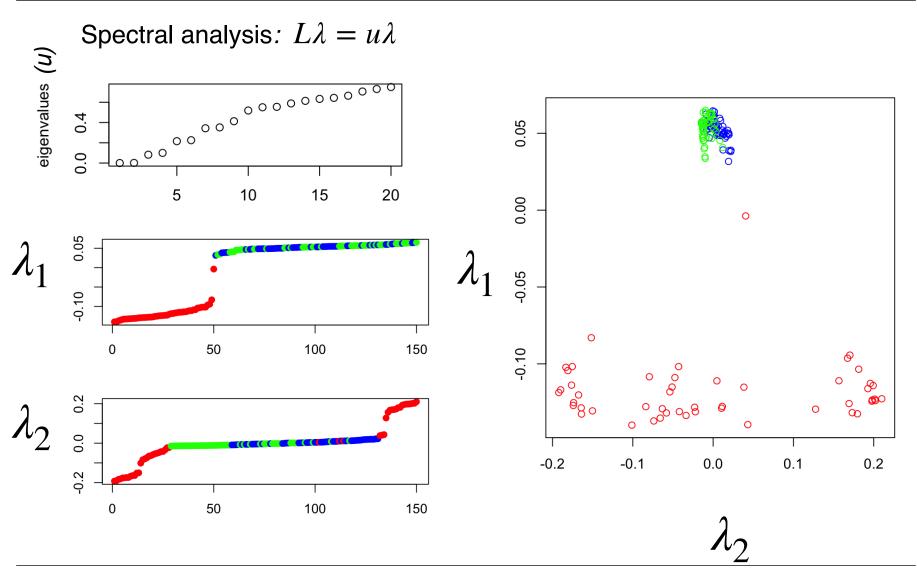
$$L = D - A$$

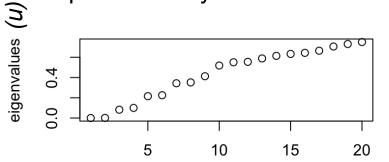
- where D is a diagonal matrix with the number of neighbours of a node
- If we perform a spectral analysis of L*

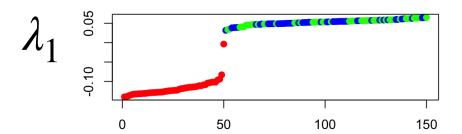
$$L\lambda = u\lambda$$

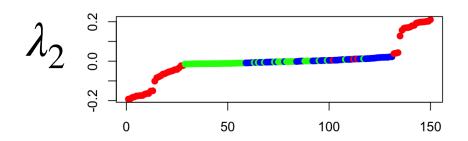
- eigenvectors (λ) provides CUTs in the graph
- eigenvalues (*u*) provides the cost of the CUT.
- Perform k-means on lowest K eigenvalues

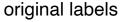
^{*} see for more details: http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_tutorial.pdf

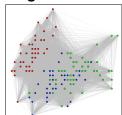


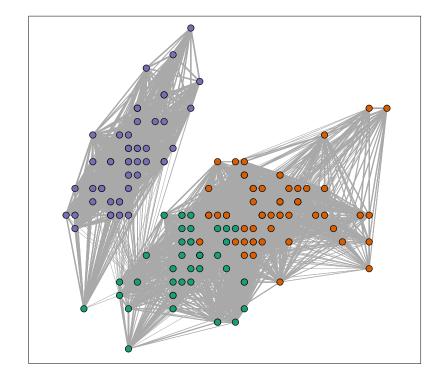


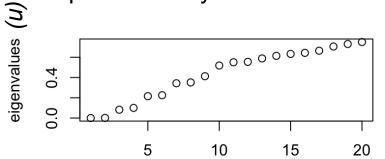


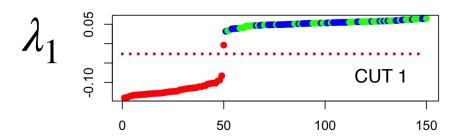


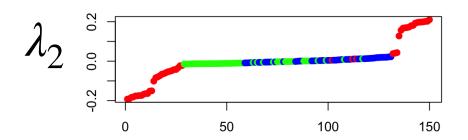


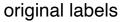


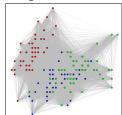


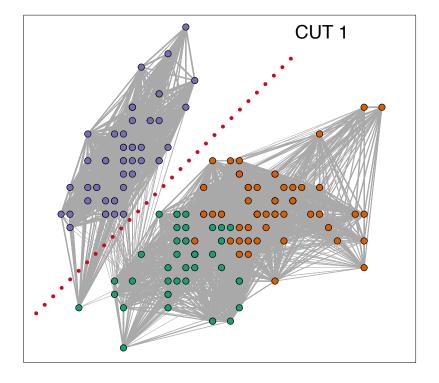




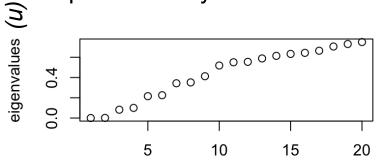


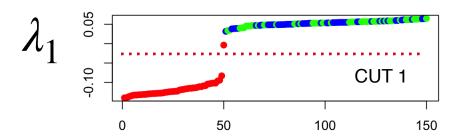


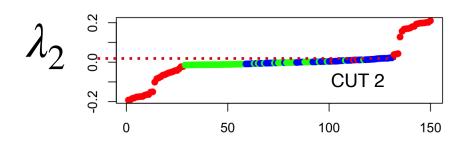


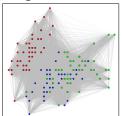


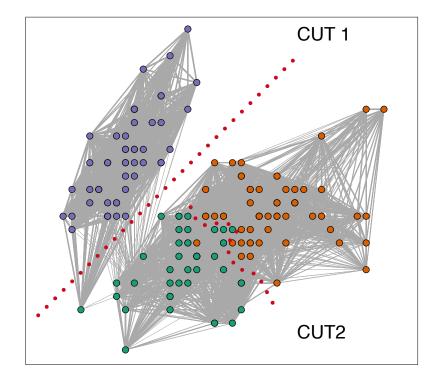


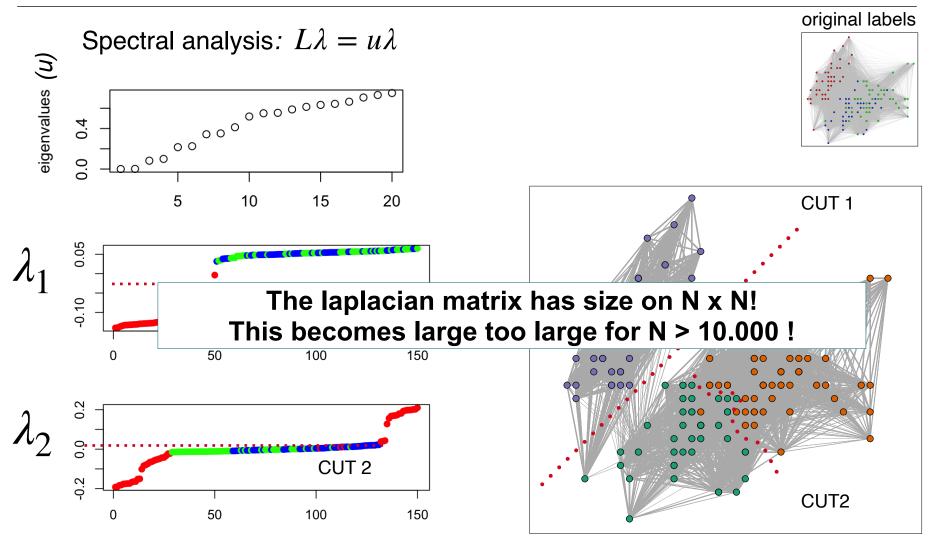




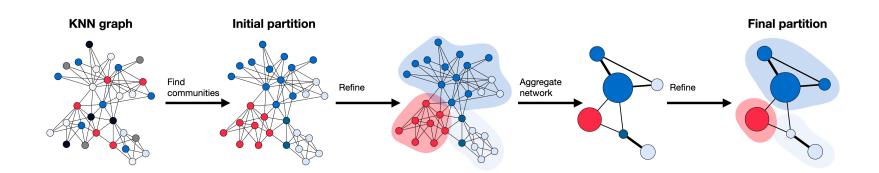








Single cell Clustering / Louvain & Leiden algorithm



Optimize cluster modularity

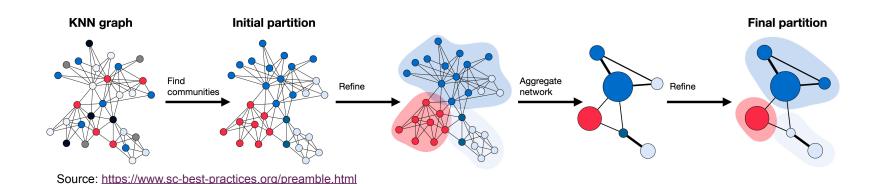
$$\mathcal{H} = \sum_{c} [e_{c} - \gamma(\frac{n_{c}}{2})],$$

where n_c is the size of cluster and e_c is the number of expected edges

Source: https://www.sc-best-practices.org/preamble.html

- A) Start with a random partition
- B) Cluster objects improving H
- C) Create a meta-graph level:
 - one meta-node for each cluster
- D) Move objects improving *H*

Single cell Clustering / Louvain & Leiden algorithm



Optimize

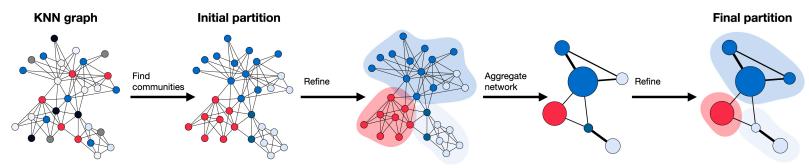
Meta-nodes and sparse graphs (knn) allows Leiden/Louvain to cope with millions of objects!

$$\mathcal{H} = \sum_{c} [e_c - \gamma(\frac{n_c}{2})],$$

where n_c is the size of cluster and e_c is the number of expected edges

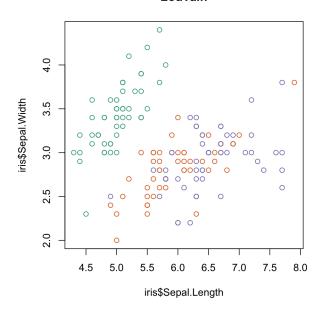
- B) Cluster objects improving H
- C) Create a meta-graph level:
 - one meta-node for each cluster
- D) Move objects improving *H*

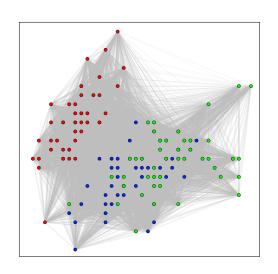
Single cell Clustering / Louvain & Leiden algorithm



Source: https://www.sc-best-practices.org/preamble.html

Louvain





Resume / Clustering Methods

- K-means, hierarchical clustering, spectral clustering
 - standard algorithms with standard performance on simple clustering problems
- Clustering of single cell algorithms
 - Leiden and louvain clustering
 - Robust and scale well to large data sets on sparse graphs (knn)
- Further issues:
 - Data dimensionality:
 - distances do not work well on high dimension
 - visualisation is easier in low level space
 - Validation:
 - How many clusters is present in the data?
 - Which is the best method?

More details on clustering

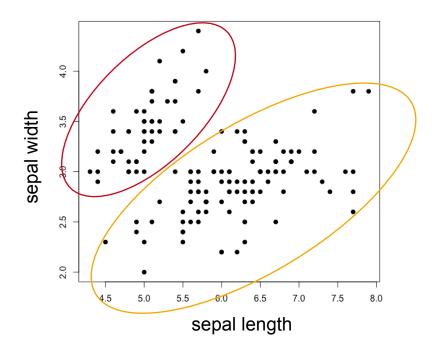
- Hastie, Tibshirani and Friedman, The Elements of Statistical Learning, Chapter 14
- Video lecture: https://www.youtube.com/watch?v=Qa6k7Rlwltg

Clustering & Dimension reduction

Clustering

- Given a data description
 - i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2



Dimension Reduction

Distances lose meaning at high dimensional space (curse of dimensionality)

$$\frac{D_{\max} - D_{\min}}{D_{\min}} \to 0.$$

Example: distance between points sampled from a normal distribution

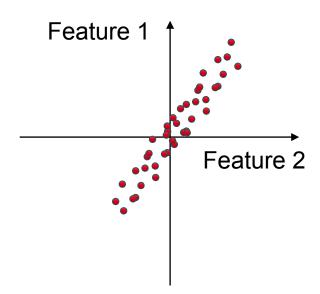


Dimension Reduction

- Distances lose meaning at high dimensional space (curse of dimensionality)
- Unspecific Filtering (without class labels):
 - Keep variables with highest variance (high variable genes)
 - Rationale: important features change values across groups
- Dimensionality Reduction by Transformation:
 - linear: principal component analysis (PCA)
 - Non-linear / manifold learning: t-SNE & UMAP (for visualisation)

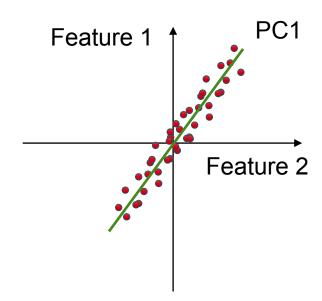
 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \underset{\|\mathbf{w}\|=1}{\text{arg max}} \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$



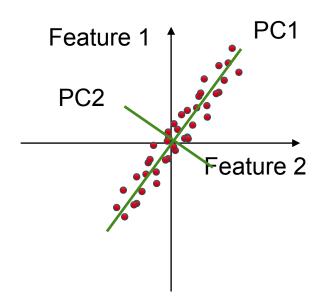
 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \underset{\|\mathbf{w}\|=1}{\text{arg max}} \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$



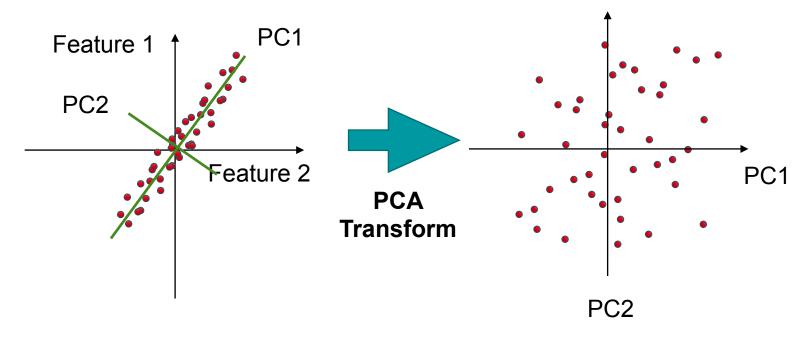
 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \underset{\|\mathbf{w}\|=1}{\text{arg max}} \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$



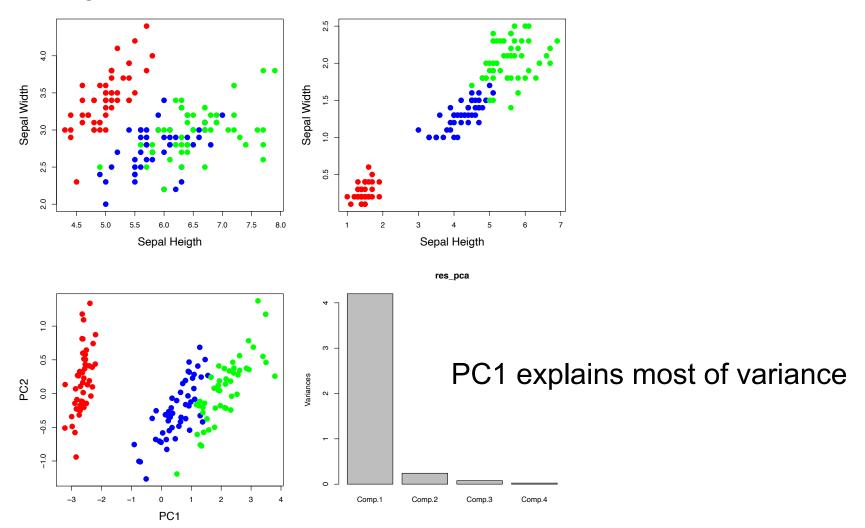
 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \underset{\|\mathbf{w}\|=1}{\text{arg max}} \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$



PCA - Iris

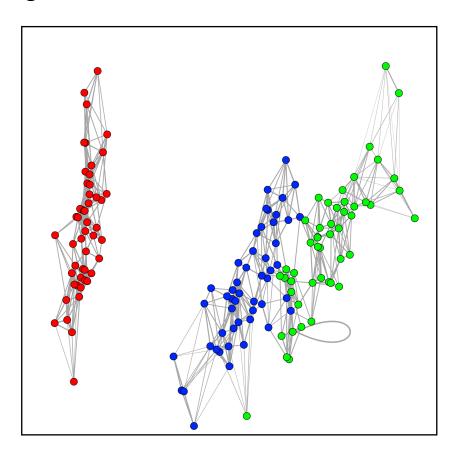
Original iris data had 4 variables



Clustering on PCA space

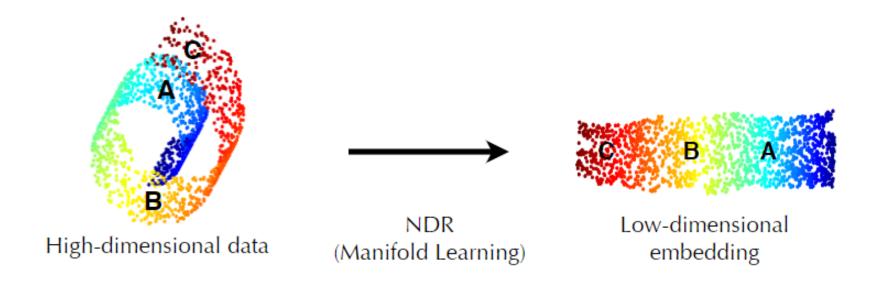
- For single cell data it is usually cluster in PCA space
 - · This is crucial for high-dimensional data!

KNN graph of IRIS in PCA space



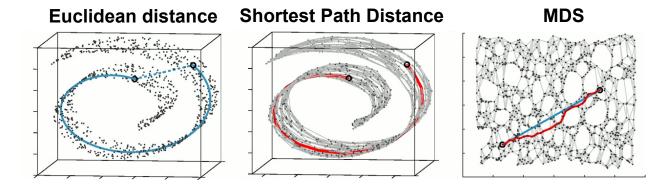
Non-linear / Manifold methods

Data might be distributed at particular regions of a high dimensional space



Non-linear /Isomap

Explore topological distance on nearest neighbour graph



Isomap algorithm:

- (1) create a knn graph
- (2) estimate shortest path between nodes (Dijkstra's algorithm)
- (3) use multidimensional scaling (MDS) on shortest paths

MDS algorithm:

find vectors
$$y_1, \dots, y_n \in Y^N$$
 such that $\sum_{i,j} (|y_i - y_j| - d_{ij})^2$

where d_{ij} is the similarity between nodes and N = 2

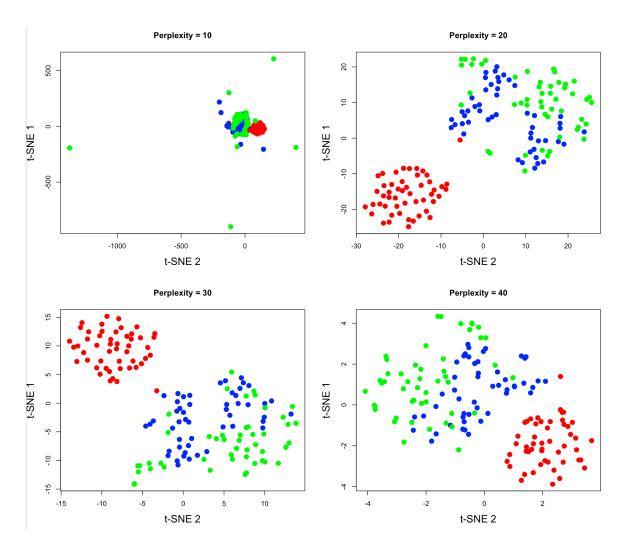
Non-linear methods

- Variants of Isomap (t-SNE or UMAP) are currently used
- t-SNE for a given kernel (similarity) D learn a N dimensional map Y

$$KL(D | Q) = \sum d_{ij}log(\frac{d_{ij}}{q_{ij}})$$
 where $q_{ij} = \frac{|y_i - y_j|^2}{\sum_k \sum_l |y_k - y_l|^2}$

KL - Kullback-Leibler divergence

t-distributed stochastic neighbour



- Sensitive to distinct starts and parametrisation
 - Perplexity ~
 neighbourhood (k)
 size
- t-SNE focus on preserving close neighbourhood

Non-linear methods

- Variants of Isomap (t-SNE or UMAP) are currently used
- t-SNE for a given kernel (similarity) D learn a N dimensional map Y

$$KL(D | Q) = \sum d_{ij}log(\frac{d_{ij}}{q_{ij}})$$
 where $q_{ij} = \frac{|y_i - y_j|^2}{\sum_k \sum_l |y_k - y_l|^2}$

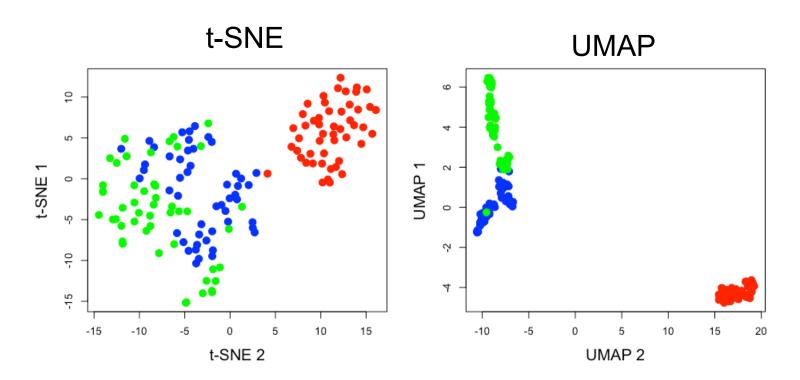
KL - Kullback-Leibler divergence

UMAP - dimension reduction based on Fuzzy Simplicial Sets

$$C((A, \mu), (A, \nu)) = \sum_{a \in A} \mu(a) \log \left(\frac{\mu(a)}{\nu(a)}\right) + (1 - \mu(a)) \log \left(\frac{1 - \mu(a)}{1 - \nu(a)}\right)$$

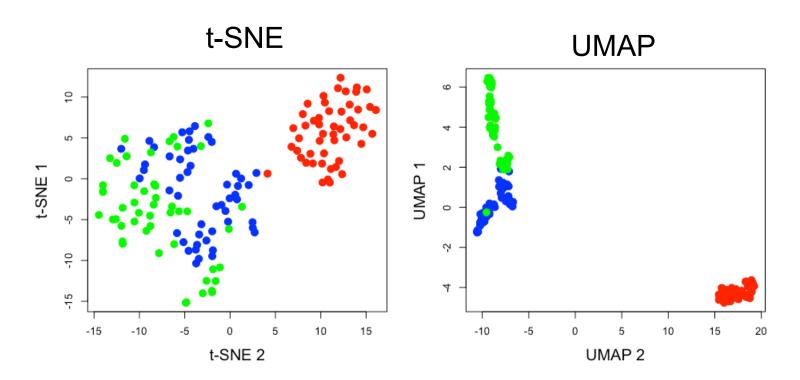
uses negative samples (non-neighboors) increasing repulsion between non-neighboors!

Manifold learning and IRIS



- Nice low dimensional visualisation of the data
- Caution: These methods fail capturing global structures (distance between clusters!)

Manifold learning and IRIS



- Nice low dimensional visualisation of the data
- Caution: These methods fail capturing global structures (distance between clusters!)

Resume / Dimension Reduction

- PCA analysis is a wide spread technique to reduce dimension!
 - Can only capture linear relationships
- Manifold methods
 - Nice low dimensional representation of data
 - Require parametrisation and lose global distance information

Complete course on manifolds/dimension reduction:

https://www.youtube.com/watch?v=evGm6lJKrDl

https://www.youtube.com/watch?v=CsUqmug7ZMc

Calendar

- 17.04.2023 Introduction to Bioinformatics and Single Cell Sequencing Analysis
- 24.05.2023 Single Cell Sequencing Analysis (cont.) & Practice
- 8.05.2023 Introduction to HPC clusters and GPU / Project Proposal
- 15.05.2023 3.7.2023 Project development
- 10.07.2023 Project Presentation

Communication/discord channel: https://discord.gg/hmGxznNpZH .

Thank you!

Cluster Validation

- How to evaluate clustering results? Which is the best method? How many clusters?
- Internal/relative validation:
 - Measure of cluster coherence:
 - Distance within a cluster -> small (compactness)
 - Distance between clusters -> high (separation)
 - Stability measures:
 - Cluster data in part of the data and compare results
- External validation:
 - Compare clusters with class labels (iris data)
 - Not possible in real word problems!

Silhouette - Internal Index

The silhouette for a given object *i* is defined as:

$$s(i) = \frac{b(i) - a(i)}{max(a(i), b(i))}$$

where

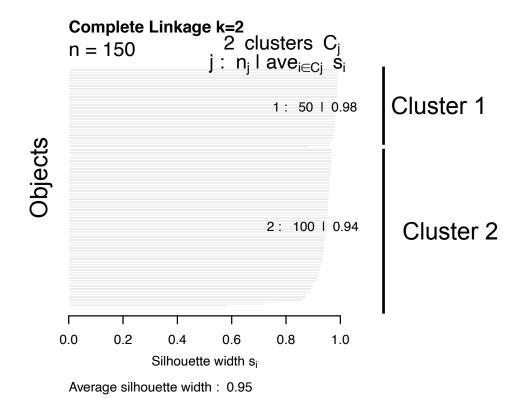
a(i) -mean distance of i to objects on same cluster (compactness) d(i,k) - mean distance of i to objects of cluster k (not own) $b(i) = min_k (d(i,k))$ (separation)

Average of s(i) -> quality of all results or clusters

Value of 1 indicate perfect solutions!

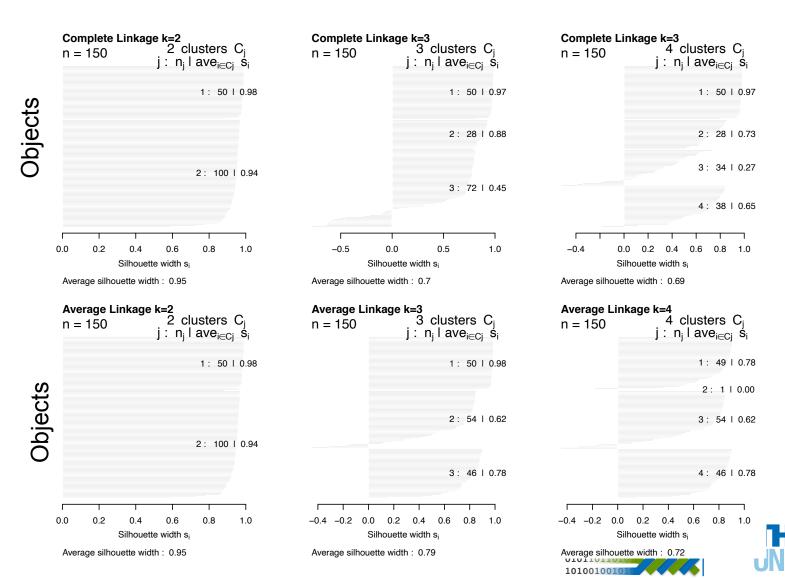
Silhouette - Internal Index / Iris

silhouette values for hierarchical clustering with Pearson



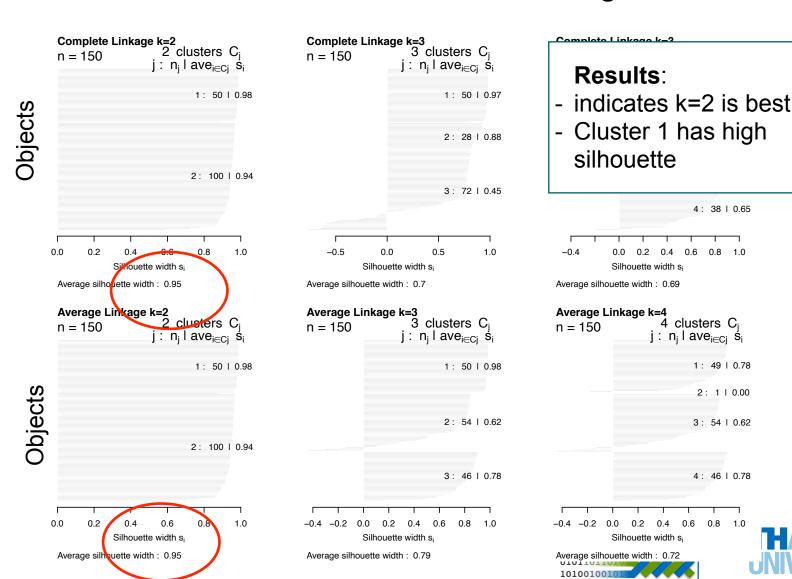
Silhouette - Internal Index / Iris

silhouette values for hierarchical clustering with Pearson



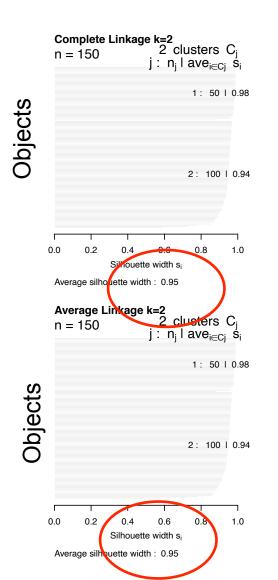
Silhouette - Internal Index / Iris

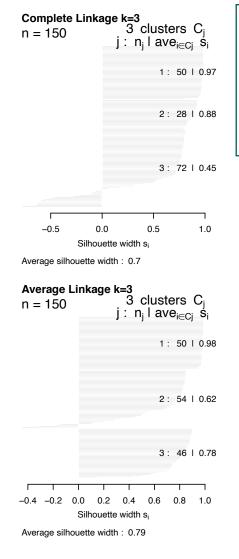
silhouette values for hierarchical clustering with Pearson



Silhouette - Internal Index / Iris

silhouette values for hierarchical clustering with Pearson



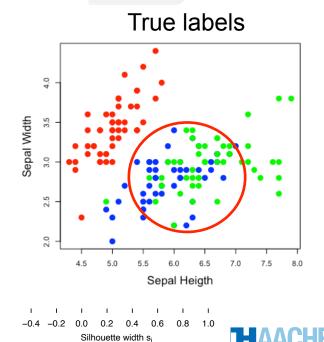


Results:

- indicates k=2 is best
- Cluster 1 has high silhouette

Average silhouette width: 0.72

1010010010



Gap statistic - Internal Index

For a given solution with *K clusters*

$$W_K = \sum_{k=1}^K \sum_{y_i = k} \sum_{y_j = k} ||x_i - x_j||^2$$

 W_K - measures cluster compactness

 W_K - tends to 0 for increasing K

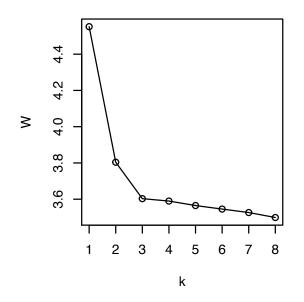
The Gap Statistic consider clustering of random data W*

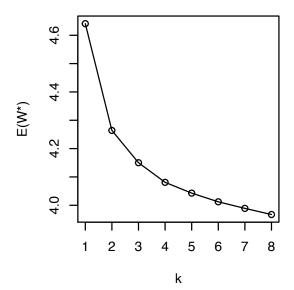
$$GAP(k) = E_r[logW_K^*] - logW_K$$

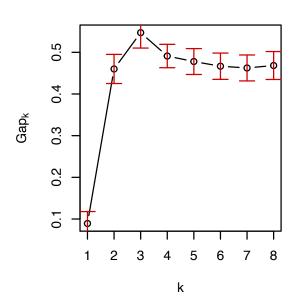
where *W** estimated from clustering random points at the same data space of *X*

Gap statistic - Iris

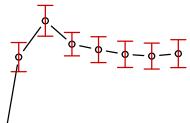
GAP statistics for Iris / Average Linkage with Pearson

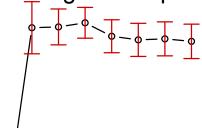


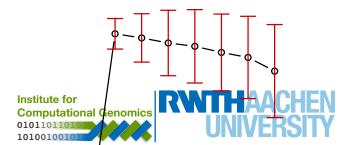




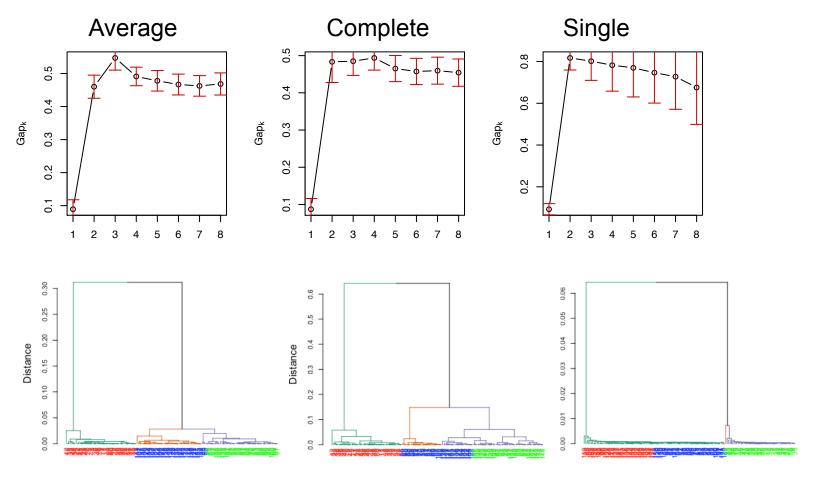
3 clusters has highest Gap !!!







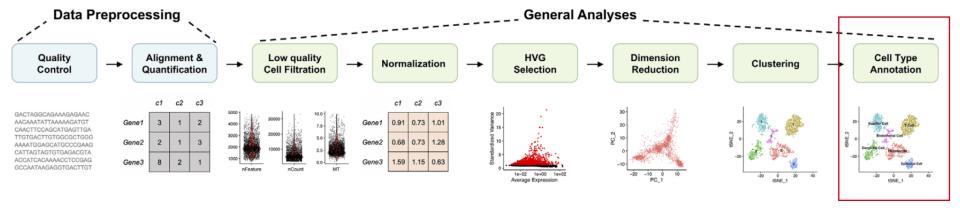
GAP statistics for distinct linkage methods



Resume / Validation

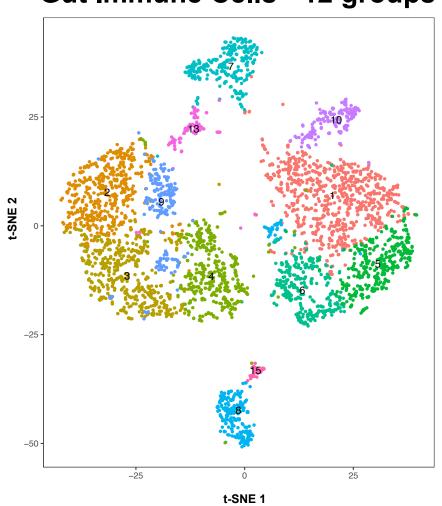
- Help detection of number of clusters / real clusters
 - Do not work perfectly!
- GAP statistics is widely used
 - Requires r data randomisations
 - high computational costs
 - random datasets uniformly distributed (unreal assumption)
- Expert interpretation is important!

Basics Bioinformatics - single cell RNA-seq



Basics Bioinformatics - Clustering

Gut Immune Cells - 12 groups



Clustering - identify cells with similar expression patterns

- based on PCA (20 dimension)

How to identify cell types?

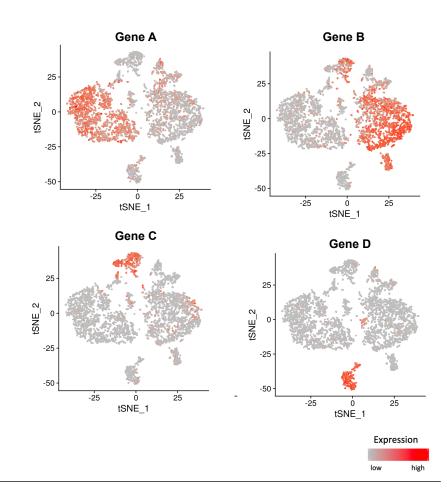
Cell Identity with an Expert

Gut Immune Cells - 12 groups

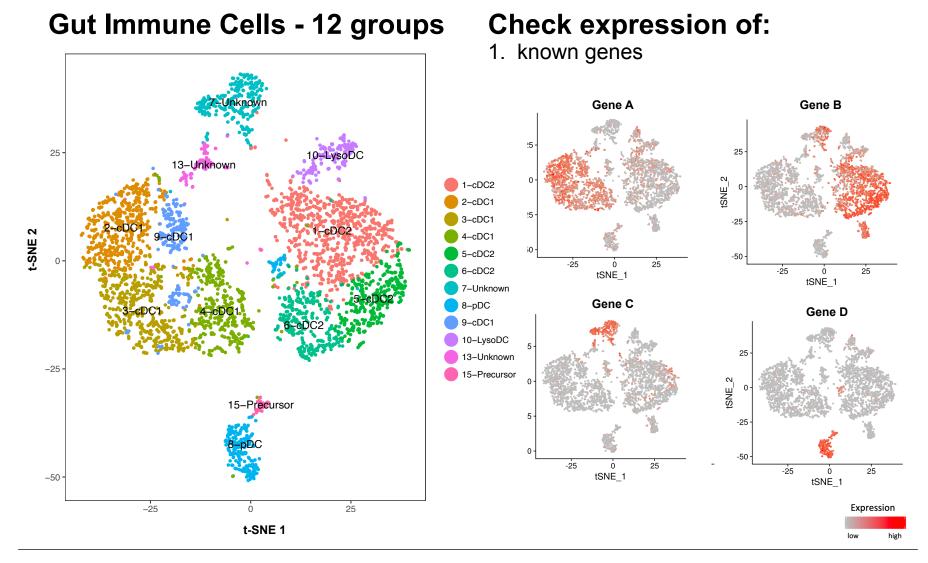
25 t-SNE 2 -25 -50 -25 t-SNE 1

Check expression of:

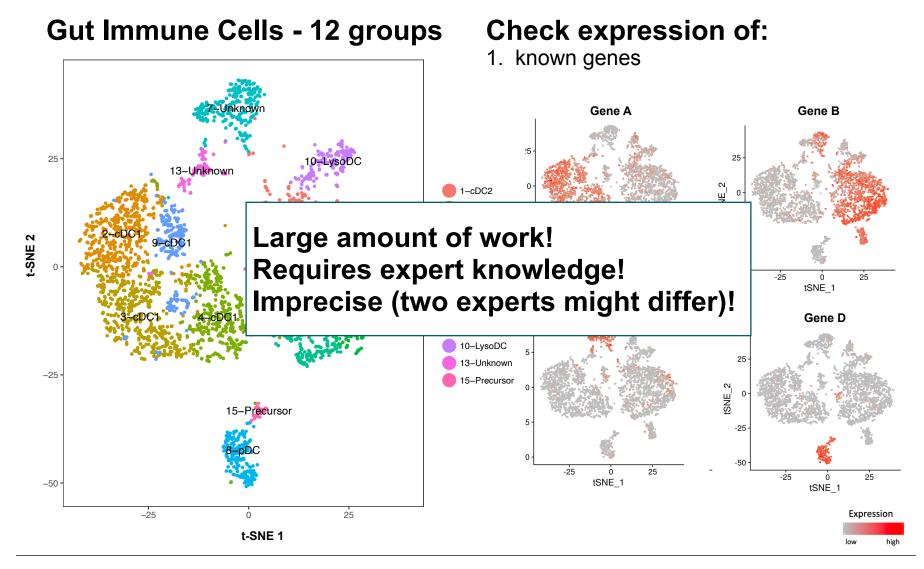
1. known genes



Cell Identity with an Expert



Cell Identity with an Expert



Resume / Single cell clustering

- Finding groups of single cells require complex pipeline:
 - Cell filtering
 - Normalisation
 - Artefact removal
 - Dimension reduction
 - Integration
 - Clustering
 - Cell annotation / visualisation
- Open points:
 - How to deal with large data sets (millions of cells)?
 - How to detect cells of rare populations?

Calendar

- 17.04.2023 Introduction to Bioinformatics and Single Cell Sequencing Analysis
- 24.05.2023 Single Cell Sequencing / Theory & Practice
- 8.05.2023 Introduction to HPC clusters and GPU / Project Proposal
- 15.05.2023 3.7.2023 Project development
- 10.07.2023 Project Presentation

Communication/discord channel: https://discord.gg/hmGxznNpZH .

Thank you!

