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Summary

1. Obtain data from cancer patients from TCGA

2. Pre-process and analysis of RNA-seq data 

3. Use machine learning to build a classifier for 

personalised medicine

4. Use interesting markers for survival analysis
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The Cancer Genome Atlas 

• TCGA  is a NCI (US) funded project to generate 
cohorts of cancers:

-Currently 33 cancers with 80-780 patients 


• Comprehensive data from tissues:

- Histology, clinical, gene expression profiling, 

copy number variation, DNA methylation 
using arrays or sequencing


• Data is publicly available upon generation and 
deposited in a portal (portal.gdc.cancer.gov)

http://portal.gdc.cancer.gov
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The Cancer Genome Atlas - Portal 
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The Cancer Genome Atlas - Portal 

Check a gene or cancer type!

I will try liver ….
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LIHC - Liver Hepatocellular Carcinoma
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LIHC - Liver Hepatocellular Carcinoma


Gene expression data!
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LIHC - Liver Hepatocellular Carcinoma


Distinct ways to count gene expression.

Distinct ways to represent transcripts
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Bioinformatics Pipeline / RNA-seq


Sequencing Pre-processing Alignment Count 

Matrix

Clustering, PCA

Differential Expression

Survival Analysis
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Bioinformatics Pipeline / RNA-seq
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Practical part not covered!
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Bioinformatics Pipeline / RNA-seq
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Similar as for arrays!



010110110101
101001001010

Institute for  
Computational Genomics

Next Generation Sequencing 

! NGS take advantage of parallelization 

! reads millions/billions of reads per run

! short reads (50-100 bps)

! error rates (0.1-1%)  
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Read Types
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Bioinformatics Pipeline / RNA-seq
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Alignment

- a large reference sequence is given (genome) 

• up to billions of base pairs


- short reads (<200bps)

- find most probable position of the read in the genome (by inexact 
string matching)
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Alignment - Split Read Mapping (RNA-Seq)
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Alignment - Split Read Mapping (RNA-Seq)

• reads are split between exons when mapped to genome

• aligners use transcript information or try to find splice 

events (STAR & TOPHAT)

Exon A Exon B Exon C
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Reference based aligners -  Overview

Memory Application (Comments)

BOWTIE + + -
 -
 5GB General 

(max. 3 missmatches)

BWA + + + + 8GB General 

(max of 200bps reads)


NOVOALIGN + + + + 8GB General 

(commercial license)


STAR + + - + 32GB
 RNA-Seq 

(allow split-maps)

BISMARK + + + + 10GB Bisulfite/reduced 
sequencing
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Computers need large memory and a few 
hours of computation per experiment!
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Quantification (Count Matrix)

bwa - based on compressed suffix trees, 


Gene Level - 17 reads

Exon level - exon 1 (8 reads), exon 2 (3 reads), exon 3 (6 reads)

Transcript Level - Exons 1,2 & 3 (10 reads) and exon 1 & 3 (7 reads) *

* complex computational methods required (RSe, or TopHAT needed for this)

Simple Counting Approaches

Fragments per Kilobase (FPKM)

- normalize counts by  read size (kb) and RNA-seq library size (mb)
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RNA-seq and Differential Analysis
Arrays and RNA-seq have distinct distributions

VOOM analysis is necessary to make variance similar to arrays.
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Log-count per gene 

Technical replicates Mouse replicates

Human replicates

Mouse replicates

Human replicates
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Bioinformatics Pipeline / RNA-seq
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Provided by TGCA or your Core Facility!

We will see this today!
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Personalized Medicine 

Diagnosis and treatment choices is mostly carried on 
macromolecular features:


- morphology of tumours (image), symptoms, blood levels 


Challenges: use molecular markers (expression or 
genetics) for diagnosis or treatment selection.
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Machine Learning - Classifier 

● Data

● Expression matrix X 

(genes vs samples)

● classification vector Y 

(diagnosis)

● Find a function:


● f(x) → y

G
en
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Gene 2

cancer type
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Machine Learning - Classifier 

● Data

● Expression matrix X 

(genes vs samples)

● classification vector Y 

(diagnosis)

● Find a function:


● f(x) → y
● For new patients X':


● f(x') → y'

G
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Gene 2

cancer type

?
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Linear Classifier
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Linear Function:

f (x , A) = a0+a1x1+...+aLxL


f ( x, A) > 0 ⇒ class A

f ( x, A) ≤ 0 ⇒ class B

● Works for 2 classes only

● Train a function for each 

cancer type

● Find coefficients A


● estimated with neural 
networks or support 
vector machines

cancer type
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Linear Classifier - Problems
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• Most real world 
problems are not 
linearly separable!


• There will be always 
some error!


• Solution: non-linear 
functions
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• Polinomial Function

• f (x , A) = a0+ a11x3

1+…+aL1x3
L


                      a12x2
1+...+aL2x2

L


              a12x1+…+aL2xL


• Third order polynomial

• Problem: overfitting
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Curse of Dimensionality 

• Size of a Euclidean space grows 
with dimension (number of genes)


• Dots (patients) are sparsely 
distributed in space
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Curse of Dimensionality : Example

• Sparse data

• - three genes

• - 2 patients with known 

cancer (red vs yellow)

• - 1 unknown  (green)
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• - three genes

• - 2 patients with known 

cancer (red vs yellow)

• - 1 unknown  (green)


Perfect classifier (on training)
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Curse of Dimensionality : Example

• Sparse data

• - three genes

• - 2 patients with known 

cancer (red vs yellow)

• - 1 unknown  (green)

• Sparse data

• - three genes

• - 2 patients with known 

cancer (red vs yellow)

• - 1 unknown  (green)


Both are perfect classifiers 
(on training)

Hard to generalise! 
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Curse of Dimensionality : Example

• There are millions of 
perfect linear classifiers


• And even more non-
linear classifiers!
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Dealing with Curse of Dimensionality 

• Have a proper training / test evaluation 
procedure 


• Use classifiers which are as simple as possible

• Reduce the dimension of your data (feature 

selection or PCA)
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Classifier Evaluation 

Measures for a two class problem (cancer + vs. non-cancer - )


Source: Lever et al., Nat. Methods (2016)
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Classifier Evaluation 

Measures for a two class problem (cancer + vs. non-cancer - )


Source: Lever et al., Nat. Methods (2016)
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Classifier Evaluation 
• The performance of your classifier needs to be 

evaluated on your test data: 

• an independent "validation cohort" 

• or retain a set of samples (1/3) that has similar 

distribution of classes of your total data


XX X train

X test
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Classifier Evaluation 
• The performance of your classifier needs to be 

evaluated on your test data: 

• an independent "validation cohort" 

• or retain a set of samples (1/3) that has similar 

distribution of classes of your total data


• Never use test data to improve classification 
(choose a better classifier or marker gene)

• For this you need to establish validation data 

(or cross validation)

XX X train

X test
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Cross-validation 

X

r=3

Train Validation

mean and std of accuracy, 
precision and sensitivity
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Elastic Net 

Is based on a linear function:

f (x , A) = a0+a1x1+...+aLxL


f ( x, A) > 0 ⇒ classe A

f ( x, A) ≤ 0 ⇒ classe B

● Find coefficients A, while most of then have 0.
● A shrinkage factor (  ) controls the number of 

genes selected. 

● Shrinkage factor can be automatically identified 

with cross-validation.

λ
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Hands on!
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Exercise (after the handout)
You should perform clustering of tissues with liver cancer. Tip: 

use code similar to the one seen in gene expression data 
(day 3). Since, we are interested in grouping patients, you 
can transpose the matrix with the function t.  


1. Can you see nice clusters in the dendrogram?


2. What about genes associated to each group? Are they 
associated to some particular biological function? Use 
differential expression analysis and GO enrichment analysis 
to solve this task. 
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Survival Analysis

Can be used to evaluate if characteristics of a patient 
indicate an increase/decrease risk of survival


- clinical: tumour type, gender

-  Molecular: expression of a gene, mutation


Common Survival Tests:

- Cox proportional hazards regression (not seen here) 


- Compares survival with a numeric variable

- Kaplan-Meier graph / Log-rank test 


- compares the survival of groups of individuals
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Kaplan-Meier graph / Log-rank test

Data:

- Event: dead / alive

- Time: period between first and last observation. 

- Characteristics: sex, tumor grade


Patient Status Time Sex

1 Dead 343 Male

2 Alive 20 Male

3 Alive 300 Female

4 Dead 200 Male
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Kaplan-Meier plot

Survival of LIHC patients - male vs. Female
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Kaplan-Meier plot

Survival of LIHC patients - male vs. Female


Probability a male patient

died after 200 days

probability a female patient 

died after 200 days

Probability ( X days) =    # cases alive after X days

                                   # cases measured after X days
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Log-rank test

Probability a male patient

died after 200 days

probability a female patient 

died after 200 days

Is the survival difference significant?
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Log-rank test

Probability a male patient

died after 200 days

probability a female patient 

died after 200 days

Is the survival difference significant?

log-rank p-value test = 0.26
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Kaplan-Meier plot

a male patient died at ~2300 days

patient is alive after ~2500 days
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Kaplan-Meier plot

a male patient died at ~2300 days

patient is alive after ~2500 days

There are too few patients 

observed > 2000 days 
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Kaplan-Meier / Log-Rank Test
KM and LRT can compare several groups at a time.


Survival vs Tumour stage at diagnosis


significance that at least 

2 groups are distinct.
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Survival Analysis and Biological Markers

How to perform survival analysis on biological markers?


1. Given their continuous nature of gene expression, 
Cox hazards test is recommended.


2. An alternative is to group patients by expression of a 
gene (low/high expression) and use Kaplan-Meyer 
plots (seen in practical).


Important: if you test several markers you need to 
correct for multiple testing!!!
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Hands on!


