Bioinformatics Lab

Ivan Gesteira Costa, Mingbo Cheng, Zhijian Li, James Nagai, Mina Shaigan Institute for Computational Genomics

Computational Epigenomics

Cell Differentiation

Hematopoiesis

Cell Differentiation

Regulatory Control – Transcription Factor Binding

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Regulatory Control – Transcription Factor Binding

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Epigenetics & Histones

Modification in histone tailschange strength of DNA bindingrecruit transcription factors

Chromatin, Regulation and Cellular Memory

Adapted from Lodish, B. et al. (2004) 5th ed.

Chromatin & Histone Code

Chromatin with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Bioinformatics Pipeline / ATAC-seq

Adapted from Rasmussen: http://www.cbs.dtu.dk/courses/27626/programme.php

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2 4

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Peak calling in ATAC-seq

- MACS2
 - most frequently used
- HMMRATAC
 - ATAC-seq specific peak caller
 - ignores reads from large fragments / linker cleavage sites

Bioinformatics Pipeline / ATAC-seq

Adapted from Rasmussen: http://www.cbs.dtu.dk/courses/27626/programme.php

Motif Search – Computational Approach

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

PU.1 Position

Weight Matrix (PWM)

N	IuMH	IC I	Α	G	G	A	A	C	T
Η	u M xA	4	G	G	G	A	A	С	A
→ H	uIFN	-β	A	G	A	A	A	G	Т
N	luβ ₂ m	l	A	G	G	A	A	С	Т
Η	uGBI	P	G	A	G	A	A	G	Т
Η	istone	e H4	A	G	G	A	A	G	С
H	HuIFN-α			G	G	A	A	С	С
		_	↓ ↓	¥	¥	V	V	¥	↓
		A	5	1	1 '	7	7	3	1
		С	0	0	0	0	0	0 2	2
		G	2	6	6	0	0	4	0
		Т	0	0	0	0	0	0	4

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

> PU.1 Position Weight Matrix (PWM)

> > PU.1 Logo

PU.1 PWM

Genome TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM Genome TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA Score 10.06

PU.1 PWM[#]

PU.1 PWM[#]

PU.1 PWM[#]

Genome Position (bp)

Example: Binding sites in ID2

Motif search for binding sites with 536 PWMs (Jaspar & Uniprobe) and FDR=0,01

> 3000 predicted binding sites

Problem definition: Find genomic regions (of small size) with depletion in DNase-seq signals

HINT (Hmm-based IdeNtification of Transcription factor footprints)

- generate normalized cleavage signals
- trained with limited supervision
- scan multivariate signals to predict footprints

BACK

TOP

FOOT PRINT

UP

Histone

Level

DNase Level

DOWN

HINT (Hmm-based IdeNtification of Transcription factor footprints)

- generate normalized cleavage signals
- trained with limited supervision
- scan multivariate signals to predict footprints

Prediction Example

Gusmao EG *et. al*, (2014), Bioinformatics, 30(22):3143-51. Gusmao EG *et. al*, (2016), Nature Methods, 13, 303–309. Li et al. (2019), Genome Biology, 20:45.

BACK

TOP

FOOT PRINT

UP

Histone

Level

DNase

Level

DOWN

HINT (Hmm-based IdeNtification of Transcription factor footprints)

- generate normalized cleavage signals
- trained with limited supervision
- scan multivariate signals to predict footprints

Prediction Example

BACK

TOP

FOOT PRINT

UP

Histone

Level

DNase

Level

DOWN

0101101110100100

Li, ..., Kramann, Costa, Biorvx, https://doi.org/10.1101/865931.

Computational Challenges - Single Cell ATAC

Computational Challenges - Single Cell ATAC

Resume / Single cell clustering

- Finding groups of single cells require complex pipeline:
 - Cell filtering
 - Normalisation
 - Artefact removal
 - Dimension reduction
 - Integration
 - Clustering
 - Cell annotation / visualisation
- Open points:
 - How to deal with large data sets (millions of cells)?
 - How to detect cells of rare populations?
 - How to deal with sparsity of scATAC seq data?

Clustering of cells / Human Fetal Cell Atlas

scRNA-seq

scATAC-seq

Single-cell chromatin accessibility profiles 790,957 cells

https://descartes.brotmanbaty.org/

- Open points:
 - · How to deal with large data sets (millions of cells)?
 - How to detect cells of rare populations?
 - How to deal with sparsity of scATAC seq data?

- Review basic biological/computational aspects
 - 1. basics of molecular biology
 - 2. basics of sequencing
 - 3. basics bioinformatics problems
 - short sequences read alignment
 - gene expression quantification
 - single cell approaches
 - computational epigenetic (today)

Today – Introduction to Bioinformatics, Next Generation Sequencing

- 2.05.2022 Single cell sequencing Practical
- 8.05.2022 Computational Epigenomics / Theory & Practical / Using RWTH HPC/GPU cluster
- 15.05.2022 4.7.2022 Project development
- 11.07.2022 Project Presentation

Communication/discord channel: <u>https://discord.gg/</u> <u>hmGxznNpZH</u>.

Thank you!

