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Source: Amit (2016), Nature Immunoloy. 
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Which cells are there? 

Which transcription factors controls cell specification?

Source: Amit (2016), Nature Immunoloy. 
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tatattattaacttcctggacttcctggaggagggaggcttatgaggcttatcatcattctctctctttattatatggatgtggatgattctaagtacccagcattctaagtaccagctaataaaatcaaa

Regulatory Control – Transcription Factor Binding

Source:  Alberts, B. et al. (2008) Garland Science, 5th ed. 
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Regulatory Control – Transcription Factor Binding

PU.1

GGAA

Source:  Alberts, B. et al. (2008) Garland Science, 5th ed. 
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Epigenetics & Histones

Sources: Lodish, H. et al. (2004) WHFreeman, 5th ed.

Modification in histone tails

- change strength of DNA binding

- recruit transcription factors 

histone tails



Chromatin, Regulation and Cellular Memory

Adapted from Lodish, B. et al. (2004) 5th ed. 

ActivatorsRepressors

GENE
“OFF”

GENE
“ON” Mediator

RNA
polymerase

Activators

General
transcription
factors

Condensed
chromatin

Decondensed
chromatin

gene  

monocytes

  T - cell 



010110110101
101001001010

Institute for  
Computational Genomics

Chromatin & Histone Code 
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Chromatin with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.
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Chromatin with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Protocol for measuring open chromatin

Active regulatory regions 
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Bioinformatics Pipeline / ATAC-seq


Sequencing Pre-processing
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Adapted from Rasmussen: 

http://www.cbs.dtu.dk/courses/27626/programme.php
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller :

1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin


2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

See for an example of a code for a peak caller 

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 
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Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller :

1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin


2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads
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See for an example of a code for a peak caller 

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller :

1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin


2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads
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See for an example of a code for a peak caller 
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Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller :

1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin


2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads
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See for an example of a code for a peak caller 

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller :

1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin


2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

Counts

2 4 8 …

See for an example of a code for a peak caller 

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Counts:

Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller :

1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin


2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

Counts

2 4 8 …

See for an example of a code for a peak caller 

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Problems:

- which window size to use?  

- proper quantification of read counts 

require several further steps: CG bias 
correction, duplicated reads, 
mappability, fragment size, …
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Peak calling in ATAC-seq 

- MACS2 

-  most frequently used


- HMMRATAC 

- ATAC-seq specific peak caller 

- ignores reads from large fragments / linker cleavage sites

Source: Yan, Genome Biology, 2020.
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Bioinformatics Pipeline / ATAC-seq
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Adapted from Rasmussen: 

http://www.cbs.dtu.dk/courses/27626/programme.php
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Regulatory

Sequence

Promoter

Pu.1 Motif

Problems

− motifs are small and degenerate (6-8 

conserved positions)

− distal binding sites (>106 from genes)

− only part of motifs are known


Too many false positive predictions!

transcription factors
transcription


 factors


tatattattaacttcctggacttcctggaggagggaggcttatgaggcttatcatcattctctctctttattatatggatgtggatgattctaagtacccagcattctaagtaccagctaataaaatcaaa

Motif Search – Computational Approach

PU.1

GGAA

Source:  Alberts, B. et al. (2008) Garland Science, 5th ed. 
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Model for DNA-protein binding

PU.1 binding sites
Kanno, Y. et al. (2005) Immune 
Cell-Specific Amplification of 
Inter feron Signal ing by the 
IRF-4/8-PU.1 Complex.

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC

MuMHC I
HuMxA
HuIFN-β
Muβ2m
HuGBP
Histone H4
HuIFN-α
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Model for DNA-protein binding

PU.1 binding sites
Kanno, Y. et al. (2005) Immune 
Cell-Specific Amplification of 
Inter feron Signal ing by the 
IRF-4/8-PU.1 Complex.
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Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome



010110110101
101001001010

Institute for  
Computational Genomics

Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome
Score
 10.06



010110110101
101001001010

Institute for  
Computational Genomics

Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome
10.06

4.81
Score




010110110101
101001001010

Institute for  
Computational Genomics

Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome
10.06

4.81
3.19Score




010110110101
101001001010

Institute for  
Computational Genomics

Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome

…10.06
4.81

3.19Score




010110110101
101001001010

Institute for  
Computational Genomics

Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome

…10.06

FDR = 1 x 10-4

GGAAGT GAAAGT

4.81
3.19

FDR- False

Discovery

Rate

Statistical

Test

Score




010110110101
101001001010

Institute for  
Computational Genomics

Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome

…10.06

FDR = 1 x 10-4

GGAAGT GAAAGT

4.81
3.19

FDR- False

Discovery

Rate

Statistical

Test

Score


Background distribution

• bitscore of all sequences with size equal to motif

• efficient estimation with dynamical programming
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Example: Binding sites in ID2

Motif search for binding sites with  536 PWMs (Jaspar & 
Uniprobe) and FDR=0,01

> 3000 predicted binding sites
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Digital Footprinting

Problem definition: Find genomic regions 
(of small size) with depletion in DNase-seq

signals



Computational Footprinting 

HINT (Hmm-based IdeNtification of 
Transcription factor footprints) 

- generate normalized cleavage signals

- trained with limited supervision

- scan multivariate signals to predict footprints


Gusmao EG et. al, (2014), Bioinformatics, 30(22):3143-51.

Gusmao EG et. al, (2016), Nature Methods, 13, 303–309.

Li et al. (2019), Genome Biology, 20:45.



Prediction Example
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Computational Footprinting 

  ATAC-seq

HINT (Hmm-based IdeNtification of 
Transcription factor footprints) 

- generate normalized cleavage signals

- trained with limited supervision

- scan multivariate signals to predict footprints


Gusmao EG et. al, (2014), Bioinformatics, 30(22):3143-51.

Gusmao EG et. al, (2016), Nature Methods, 13, 303–309.

Li et al. (2019), Genome Biology, 20:45.
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Prediction Example

  ATAC-seq

HINT (Hmm-based IdeNtification of 
Transcription factor footprints) 

- generate normalized cleavage signals

- trained with limited supervision

- scan multivariate signals to predict footprints


Gusmao EG et. al, (2014), Bioinformatics, 30(22):3143-51.

Gusmao EG et. al, (2016), Nature Methods, 13, 303–309.

Li et al. (2019), Genome Biology, 20:45.



HINT (Hmm-based IdeNtification of 
Transcription factor footprints) 

- generate normalized cleavage signals

- trained with limited supervision

- scan multivariate signals to predict footprints
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  ATAC-seq

Gusmao EG et. al, (2014), Bioinformatics, 30(22):3143-51.

Gusmao EG et. al, (2016), Nature Methods, 13, 303–309.

Li et al. (2019), Genome Biology, 20:45.



Open chromatin with scATAC-seq

Li, …, Kramann, Costa, Biorvx, https://doi.org/10.1101/865931.


UMAP / Clustering cluster pseudo bulk ATAC-seqOpen Chromatin Matrix

Adapted from Satpathy, 


Nature biotechnology, 2019

Droplet based scATAC-seq

cell 

suspension

Footprinting & 
TF Activity
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Peaks



Computational Challenges - Single Cell ATAC

Open Chromatin Regions
Gene

“bulk” scATAC-seq

Peaks
1. High dimension

 > 100.000 peaks

2. Extremely sparse 

- 98% of zeros

- loss of DNA material 
cause dropout events  
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Resume / Single cell clustering 

• Finding groups of single cells require complex pipeline:

• Cell filtering

• Normalisation

• Artefact removal

• Dimension reduction 

• Integration

• Clustering

• Cell annotation / visualisation


• Open points:

• How to deal with large data sets (millions of cells)?

• How to detect cells of rare populations? 

• How to deal with sparsity of scATAC seq data? 
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Clustering of cells / Human Fetal Cell Atlas 

https://descartes.brotmanbaty.org/

scRNA-seq scATAC-seq 

• Open points:

• How to deal with large data sets (millions of cells)?

• How to detect cells of rare populations? 

• How to deal with sparsity of scATAC seq data? 

Adapted from Donke et al. 2020. 
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Resume

• Review basic biological/computational aspects


1.basics of molecular biology

2.basics of sequencing

3.basics bioinformatics problems


• short sequences read alignment

• gene expression quantification

• single cell approaches 

• computational epigenetic (today)
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Calendar

Today – Introduction to Bioinformatics, Next Generation 
Sequencing 

2.05.2022 –  Single cell sequencing Practical

8.05.2022 – Computational Epigenomics / Theory & Practical / 
Using RWTH HPC/GPU cluster

15.05.2022 – 4.7.2022 – Project development

11.07.2022 – Project Presentation


Communication/discord channel: https://discord.gg/
hmGxznNpZH  .


https://discord.gg/hmGxznNpZH
https://discord.gg/hmGxznNpZH


010110110101
101001001010

Institute for  
Computational Genomics

Thank you!


