Practical Example: High Performance Computing

Ivan G. Costa, Mingbo Cheng, Zhijian Li, Martin Manolov

Institute for Computational Genomics

Joint Research Centre for Computational Biomedicine

RWTH Aachen University, Germany

RWTH Compute Cluster

- High Performance Computing Infrastructure
- Linux-Based
- Highly Parallelizable
- All RWTH affiliates granted access, but with limited resource allocation

 More information on: https://www.itc.rwth-aachen.de/go/id/hisv

RWTH Selfservice

 Use Selfservice (https://idm.rwth-aachen.de/selfservice/) to manage university accounts and create HPC-account (CREATE ACCOUNT tab) to use the Cluster

Service/Account	Username
RMTH Single Sign-On (shamats CAMPUS-Office/Web	densis) minibiologi
Hochleistungsrechnen RWTH Aachen	mm844865
Hochleislungsrechnen RWTH Aachen	nove0029
Hochleislungsrechnen RWTH Aachen	neth0334
Hochleislungsrechnen RWTH Aachen	nuth0343
Lafe- und Lemportal L/P	mm844865
	mm844865
RWTH Service	mm844865@koms.nath-aachen.do
RWTH Service	mm844805-girwith-sachen-do
	mm844865
Title Service	arumabil-6805
	mm844865

• Use established *secure shell protocol (ssh)* connection to log in to the front-end cluster nodes.

\$ ssh <Username>@<Servername(or IP)>

Server-name	OS	Purpose
login18-1.hpc.itc.rwth- aachen.de	Linux (CentOS 7)	Front-End Dialogue System for CLAIX2018
login18-2.hpc.itc.rwth- aachen.de	Linux (CentOS 7)	Front-End Dialogue System for CLAIX2018
login18-3.hpc.itc.rwth- aachen.de	Linux (CentOS 7)	Front-End Dialogue System for CLAIX2018
login18-4.hpc.itc.rwth- aachen.de	Linux (CentOS 7)	Front-End Dialogue System for CLAIX2018
login.hpc.itc.rwth-aachen.de	Linux (CentOS 7)	Front-End Dialogue System for CLAIX2016
login2.hpc.itc.rwth-aachen.de	Linux (CentOS 7)	Front-End Dialogue System for CLAIX2016
login18-g-1.hpc.itc.rwth- aachen.de	Linux (CentOS 7)	GPU-System (2018)
login18-g-2.hpc.itc.rwth- aachen.de	Linux (CentOS 7)	GPU-System (2018)
login-g.hpc.itc.rwth-aachen.de	Linux (CentOS 7)	GPU-System (2016)
	Instit Com 0101	ute for outational Genomics 10110101

1010010010

• Use established *secure shell protocol (ssh)* connection to log in to the front-end cluster nodes.

\$ ssh <Username>@<Servername(or IP)>

• In the case of the RWTH Cluster:

\$ ssh <TIM>@<login18-1.hpc.itc.rwth-aachen.de>

• Special nodes for intensive IO operations

copy18-1.hpc.itc.rwth-aachen.de	CentOS
copy18-2.hpc.itc.rwth-aachen.de	CentOS
copy.hpc.itc.rwth-aachen.de	CentOS

• Use this nodes if you ever need to transfer big files to the cluster

Name	Path	Backup	Quota (file)	Quota (#files)
\$HOME	/home/ <tim-kennung></tim-kennung>	yes	150 GB	-
\$WORK	/work/ <tim-kennung></tim-kennung>	no	250 GB	-
\$HPCWORK	/hpcwork/ <tim-kennung></tim-kennung>	no	1000 GB	50000

Name	Path	Backup	Quota (file)	Quota (#files)
\$HOME	/home/ <tim-kennung></tim-kennung>	yes	150 GB	-
\$WORK	/work/ <tim-kennung></tim-kennung>	no	250 GB	-
\$HPCWORK	/hpcwork/ <tim-kennung></tim-kennung>	no	1000 GB	50000
Source code Configuration	files			

Name	P	ath	Backup	Quota (file)	Quota (#files)
\$HOME	/home/ <tim-< td=""><td>Kennung></td><td>yes</td><td>150 GB</td><td>-</td></tim-<>	Kennung>	yes	150 GB	-
\$WORK	/work/ <tim-k< td=""><td>(ennung></td><td>no</td><td>250 GB</td><td>-</td></tim-k<>	(ennung>	no	250 GB	-
\$HPCWORK	/hpcwork/ <t< td=""><td>M-Kennung></td><td>no</td><td>1000 GB</td><td>50000</td></t<>	M-Kennung>	no	1000 GB	50000
Source code, Configuration files Working data					

Name	Path			Backup	Quota (file)	Quota (#files)
\$HOME	/home/ <tim-kennung></tim-kennung>			yes	150 GB	-
\$WORK	/work/ <tim-kennung></tim-kennung>			no	250 GB	-
\$HPCWORK	/hpcwork/ <thm-kennung></thm-kennung>			no	1000 GB	50000
		1				
Source code, Configuration files			Output files Working data		IO intensive large files	e job,
Institute for Computational Genomics 010110110101					NITH AACHE	

1010010010

Cluster – mount drive

- Use *sshfs* to mount remote directory to local machine:
 - \$ sshfs <TIM>@copy18-1.hpc.itc.rwth-aachen.de:<Path> <local Path>
- Unmount with:
 - \$ sudo umount -I <local Path>
- Only works if you are inside eduroam main-network or through RWTH VPN
 - https://help.itc.rwth-aachen.de/en/service/vbf6fx0gom76/article/6a2cfd0933604cd28eaaa 69194ff8d16

Cluster – Batch Jobs

- Front-end nodes, jobs-handling system SLURM
- SBATCH [options] command [arguments]
- Slots

Parameter	Function
-c,cpus-per-task <numcpus></numcpus>	Number of threads/processes for an OpenMP/Hybrid script
-n,ntasks <numtasks> ntasks-per-node <numtasks></numtasks></numtasks>	Number of threads/processes for an MPI job
-N,nodes <numnodes></numnodes>	Number of nodes/hosts for the job

• https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545 cf68a

Cluster – Batch Jobs

• Further job parameters

Parameter	Function
-Jjob-name= <jobname></jobname>	A name for the current job
mem-per-cpu= <size></size>	Required RAM per allocated CPU
-o,output= <filename></filename>	Name for a report file, containing the standard output of the job
-t,time=d-hh:mm:ss	Time for job execution, after this time the job is killed
-A,account= <project></project>	Submit a job for a specific project
gres=gpu: <type>:2</type>	Requesting two GPUs per node

https://slurm.schedmd.com/sbatch.html - official slurm documentation

Cluster – Batch Jobs

- **sbatch** jobscript.sh To run a job, specified in jobscript.sh
- At the end of the jobscript.sh file add a line for execution a script of programm
- Might need to load some modules prior, e.g.:
 - module load python/3.7.3
 - *module* avail to list all available modules
- Set environment variable inside a cluster job script
 - export PATH=~/.local/bin:\$PATH

Cluster – Example Scripts

#!/bin/bash

Job name #SBATCH --job-name=MYJOB

File for the output
#SBATCH --output=MYJOB_OUTPUT

Time your job needs to execute, e. g. 15 min 30 sec #SBATCH --time=00:15:30

Memory your job needs per node, e. g. 1 GB #SBATCH --mem=1G

The last part consists of regular shell commands: ### Change to working directory cd /home/usr/workingdirectory

Execute your application myapp.exe

Cluster – Monitor Jobs and Resources

- Use *squeue* to monitor current jobs in progress:
 squeue -u <TIM> for only jobs by specific users
- Use *scancel* to stop current jobs from executing
 - scancel -u <TIM> for killing jobs by specific user
 - scancel -n <Jobname> for killing a specific job
- Use *quota* to see occupied space on the hard-drives and used number of files.
- Use *r_wlm_usage -q* to see updated accounting information. Currently no monthly CPU-time quotas in place.
- More Info:

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/13ace46cfbb84e92a64c1361e0e4c104

- Login to a GPU-Node by: ssh <TIM>@login18-g-1.hpc.itc.rwth-aachen.de
- See GPU usage with nvidia-smi

Tue May 7 17:24:20 2019 -----NVIDIA-SMI 418.43 Driver Version: 418.43 CUDA Version: 10.1 GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. +====+====+====+=====+ 0 Tesla V100-SXM2... Off | 00000000:62:00.0 Off | 0 N/A 42C P0 54W / 300W | 0MiB / 16130MiB | 0% E. Process 1 Tesla V100-SXM2... Off | 00000000:89:00.0 Off | Θ N/A 42C P0 54W / 300W 0MiB / 16130MiB 0% E. Process Processes: GPU Memory PID Type Process name GPU Usage _____ No running processes found ____

- Login to a GPU-Node by: ssh <TIM>@login18-g-1.hpc.itc.rwth-aachen.de
- See GPU usage with nvidia-smi

Tue May 7 17:24:20 2019 NVIDIA-SMI 418.43 Driver Version: 418.43 CUDA Version: 10.1 GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M. 0 Tesla V100-SXM2... Off | 00000000:62:00.0 Off | P0 54W / 300W | 0MiB / 16130MiB | 0% E. Process N/A 42C 1 Tesla V100-SXM2... Off | 00000000:89:00.0 Off | Θ P0 54W / 300W | 0MiB / 16130MiB | 0% E. Process N/A 42C GPU-id and type Processes: GPU Memory PID Type Process name GPU Usage No running processes found

- Login to a GPU-Node by: ssh <TIM>@login18-g-1.hpc.itc.rwth-aachen.de
- See GPU usage with nvidia-smi

- Login to a GPU-Node by: ssh <TIM>@login18-g-1.hpc.itc.rwth-aachen.de
- See GPU usage with nvidia-smi

Compute model: 1 person

Cluster – Exercise – GPU with python

- Sign in to the cluster
 \$ssh <TIM>@login18-g-2.hpc.itc.rwth-aachen.de
- Check if you're successfully in the group:
 \$ groups # lect0055 should be there
- Load modules and install some libraries locally \$ module unload intelmpi \$ module switch intel gcc \$ module load cuda/100 \$ module load cudnn/7.4 \$ module load python/3.8.7 \$ pip3 install --user --upgrade tensorflow-gpu==2.4.1 \$ pip3 install --user sklearn keras \$ export PATH=~/.local/bin:\$PATH

Cluster – Exercise – GPU with python

- Create a new directory and copy the files needed \$ cd ~/
 \$ mkdir BioInfo
 \$ rsync -rp /home/lect0055/sample BioInfo
 \$ cd BioInfo/sample/GPU
- Edit (with vim) your email address and submit job (\$ sbatch run.sh)
- Check status regularly (\$ squeue -u <TIM>)

Cluster – Exercise – CPU with R

- Install miniconda3 virtual environment
 - \$ cd ~/

\$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linuxx86 64.sh

- \$ **bash** Miniconda3-latest-Linux-x86_64.sh
- \$ **source** miniconda3/bin/activate
- \$ conda create -n bioinfo
- \$ conda activate bioinfo
- \$ conda install -c conda-forge r-base r-essentials

Cluster – Exercise – CPU with R

- Open R and install some packages
 \$ R
 - > install.packages("dplyr")
 - > install.packages("Seurat')
 - > install.packages("patchwork')
 - > install.packages("devtools")
 - > devtools::install_github("satijalab/seurat-data")

>

```
install.packages("https://seurat.nygenome.org/src/contrib/ifnb.SeuratD
ata_3.0.0.tar.gz", repos = NULL, type = "source")
> quit("no")
```

- Navigate to the folder
 \$ cd ~/BioInfo/sample/CPU
- Edit (with vim) your email address and submit job (\$ sbatch run.sh)
- Check status regularly (\$ squeue -u <TIM>)

Practical Example: Linux Basics

The Operating System UNIX

- UNIX Development
 - 60s: MULTICS: MULTiplexed Information and Computing Service
 - Developed by MIT, Bell Labs and General Electrics
 - Written in Programming Language 1 (PL1) and Assembly
 - Thompson and Ritchie later create UNIX, written in C

• command parameter1 parameter2 ...

• man – manual. Displays manuals for linux packages (try man man). Displays useful information about how to use the package.

pwd – print working directory. Displays the current working directory

- *Is* **lis**t. Displays the content of a directory
 - Is -I ~/Pictures

-rw-rr	1	martin	martin	101685	Apr 29	13:23	Selection_001.png
-rw-rr	1	martin	martin	39835	Apr 29	14:37	Selection_002.png
-rw-rr	1	martin	martin	76985	Apr 29	14:48	Selection_003.png
-rw-rr	1	martin	martin	27096	May 2	14:04	Selection_004.png
-rw-rr	1	martin	martin	62783	May 3	11:58	Selection_005.png
-rw-rr	1	martin	martin	65201	May 6	16:11	Selection_006.png
drwxrwxr-x	2 	martin	martin	4096	Apr 24	11:41	Temp
▼	▼		V	V		V	\checkmark
Access rights	Link	s O\ G	wners/ roups	Size	L. Mo	ast dified	Filename

• *Is* – list. Displays the content of a directory

-rw-r--r-- 1 martin martin 101685 Apr 29 13:23 Selection_001.png

- Access rights:
 - Type: (d)irectory, (l)ink, (-) a file
 - Rights: (r)ead, (w)rite, e(x)ecute
 - Sequence: user group anybody
- Owner/Group:
 - Owner first column: *martin*
 - Group second column: martin
- Either can be changed with *chmod* and *chgrp* respectively
- Run executable with full path or from directory with "./file"

- cd change directory. Switches to a new directory, supplied as a parameter
- *mkdir* make directory. Creates a new directory
- *rm* remove. Removes a specified file or directory ("-r")
- cp copy. Copy a file or directory ("-r")
- *scp* **s**ecure **copy**. Copy a file to or from a remote source
- *rsync* a fast copying tool. Also works for remote copy

- *In* link. Link a file into a new directory
- *echo* Prints a string to standard output
- cat concatenate. The content of a file is printed to standard output
- wc word count. Counts the number of words, rows ("-l") pr characters ("-c") in a file.

- pipe ("|") connect commands
- output (">") and input ("<") for a specific program. Output can also concatinate to existing content, without deleting (">>")

Linux – Environment Variables

Variable	Description
PATH	Colon separated list of directories, which will be searched through when entering a name of executable
HOME	The pathname of the home directory.
SHELL	The currently used shell program
USER	The current username

\$ echo \$PATH /usr/local/sbin

\$ export PATH=~/.local/bin:\$PATH
\$ echo \$PATH
/home/martin/.local/bin:/usr/local/sbin

Linux – Vim

- A further development of Vi
- Open-Source editor for use inside the Terminal
- Open file with "\$ vim filename"
 - Type "i" for insert (edit)
 - ESC to go back to entry menu
 - :q exit without saving
 - :wq save and exit
 - :q! force exit without saving

Linux – Bash Scripts – Exercise

#!/bin/bash
echo Download some sample data
wget https://www.costalab.org/wp-content/uploads/2019/05/data2.zip

echo Unzipping the data unzip data2.zip

echo Removing the archive rm data2.zip

echo Data ready to work with

- Write in a file with .sh extension
- Change the file mods bits
 - chmod 770 somefile.sh
- Execute the file with "./somefile.sh"

Further Readings

- Linux tutorials:
 - https://www.tutorialspoint.com/unix/
 - https://ryanstutorials.net/linuxtutorial/
- SLURM batch system
 - https://slurm.schedmd.com/documentation.html
 - https://doc.itc.rwth-aachen.de/display/CC/Using+the+SLUR M+Batch+System
 - https://hpc-wiki.info/hpc/SLURM#Jobscript_Examples

