Bioinformatics Software Lab Introduction to Single Cell Sequencing

Ivan Gesteira Costa, Mingbo Cheng, Zhijian Li, Martin Manolov Institute for Computational Genomics

Objectives

- 1. basics of single cell sequencing
- 2. basic bioinformatics/computational problems
 - dimension reduction
 - clustering
 - data integration

Expression at Single Cell Level

Cell Differentiation

Cell Differentiation

Cell Differentiation & Gene Expression

Source: Amit (2016), Nature Immunoloy.

Gene Expression of Lymphoid Cells

PBMCs from Humans

Single cell RNA-seq from 68k cells

Source: Zheng et al. 2017 & Buenrostro et al. 2018

Droplet based RNA single cell sequencing

Institute for Computatio 0101101101 1010010010

Basics Bioinformatics - single cell RNA-seq

Naive cytotoxi

genomics

×0

-

Seurat -R

cell ranger

Droplet based RNA single cell sequencing

Source: 10x genomics

Source: 10x genomics

Basics Bioinformatics - single cell RNA-seq

Naive cytotoxic

Basics Bioinformatics - Cell Filtering

- 1. sum UMIs (copy of transcripts) per cell
- 2. consider cells with total UMI count > 99th of expected recovered cells

cell ranger - 10x genomics

Basics Bioinformatics - single cell RNA-seq

Clustering & Dimension reduction

Given a data description

- i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2

Given a data description

- i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2

Given a data description

- i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

	Sepal Length	Sepal Width	Petal Length	Petal Width
Flower 1	5.1	3.5	1.4	0.2
Flower 2	4.9	3.0	1.4	0.2
Flower 3	4.7	3.2	1.3	0.2
Flower 4	4.6	3.1	1.5	0.2

- Given a data description
 - i.e. measurement of size of iris flowers
- Find groups of similar observations
 - i.e. iris flower sub-types

Iris Virginia

Iris Versicolor

Clustering Formalism

- For a given data:
 - Matrix *X* with *N* observations and *L* dimensions where *x_i* is a vector representing observation *i*

X 11	X 12	•••	X1L
X 21	X 22		X 2L
X 31	X 32		X3L
X _{N1}	X N2		X _{NL}

- find groups of similar observations
 - vector $Y = (y_1, ..., y_N)$

where $y_i \in \{1, ..., K\}$ indicates the cluster of observation *i*

Distance

- A important concept in clustering is a distance (similarity) between a pair of objects x_i and x_j
 - Observations of a same group should be close in space

Euclidean distance (sensitive to scale)

$$d(x_{i}, x_{j}) = \sqrt{\sum_{l=1}^{L} (x_{il} - x_{jl})^{2}}$$

Distance

- A important concept in clustering is a distance (similarity) between a pair of objects x_i and x_j
 - Observations of a same group should be close in space

Euclidean distance (sensitive to scale)

$$d(x_i, x_j) = \sqrt{\sum_{l=1}^{L} (x_{il} - x_{jl})^2}$$

Pearson Correlation (scale insensitive/ similarity) $\sum_{l=1}^{L} (x_{il} - \overline{x}_i)(x_{jl} - \overline{x}_j)$

 $d(x_i, x_i) =$

Distance

- A important concept in clustering is a distance (similarity) between a pair of objects x_i and x_j
 - Observations of a same group should be close in space

Euclidean distance (sensitive to scale)

$$d(x_i, x_j) = \sqrt{\sum_{l=1}^{L} (x_{il} - x_{jl})^2}$$

Pearson Correlation (scale insensitive/ similarity) $\sum_{l=1}^{L} (x_{il} - \overline{x}_i)(x_{jl} - \overline{x}_j)$

 $d(x_i, x_i) =$

Distance and Scale

- In some problems scale can be important!
 - Similarly in changes are more important / not absolute values.

Euclidean - not similar Correlation - similar z-score normalised data

Euclidean - similar Correlation - similar

Clustering Methods

Hierarchical methods

- Mostly bottom up
- based on distance / simple to interpret
- Partitional methods (k-means or mixture models)
 - Mostly top down
 - Use models of groups, centroids
- Graph based methods
 - Use graph formalisms to represent data:
 - nodes are representations
 - edges weights represent distances
 - explore graph topologies

- Botton up method
 - Starting with a distance (similarity) matrix and each object as a group
 - Repeat:
 - Joint two most similar groups
 - Until the dendrogram has only one group

Gene 1

Single-Linkage

- Join two groups where two examples are close
- Find groups with linear shapes

Distance Matrix

	1 2	2 3	3 4	1 5	5
1	0				7
2	2	0			
3	6	3	0		
4	10	9	7	0	
5	9	8	5	4	0

Distance Matrix

Distance Matrix

$$d_{(1,2),3} = \min\{d_{1,3}, d_{2,3}\} = \min\{6,3\} = 3$$

$$d_{(1,2),4} = \min\{d_{1,4}, d_{2,4}\} = \min\{10,9\} = 9$$

$$d_{(1,2),5} = \min\{d_{1,5}, d_{2,5}\} = \min\{9,8\} = 8$$

$$d_{(1,2,3),4} = \min\{d_{(1,2),4}, d_{3,4}\} = \min\{9,7\} = 7$$

$$d_{(1,2,3),5} = \min\{d_{(1,2),5}, d_{3,5}\} = \min\{8,5\} = 5$$

Institute for Computational Genomics 010110110100 10100100100

3

0

Single-Linkage

- Groups with closest genes
- linear shapes

Complete-Linkage

- Closest groups with more far genes
- Compact clusters

Average Linkage

- Groups with closest centroids (middle)
- Outlier robust

Which linkage?

Which distance?

True labels

Hierarchical Clustering of Iris

True labels

Hierarchical Clustering of Iris

Institute for Computational Genomics 010110110100 UNIVER

True labels

- · Hierarchical cluster is sensitive to noise/outliers
- High computational cost O(n²)

K-means

Iterative algorithm using **centroids** as cluster representations

Requires specification of number of clusters (K)

Algorithm:

Start cluster (*Y*) randomly Repeat for a number of iterations - estimate centroid (*m_k*) for each cluster $m_{k} = \frac{\sum_{i=1}^{N} 1(y_{i} = k)x_{i}}{\sum_{i=1}^{N} 1(y_{i} = k)}$ - Assign objects to closest centroid: *y_i* = argmin_kd(*x_i*,*m_k*)

* convergence is only guaranteed for Euclidean distance

K-means on Iris

- · K-means tends to find spherical clusters
- Sensitive to initialisation

Resume / Clustering Methods

- K-means and hierarchical clustering
 - standard algorithms with standard performance on simple clustering problems
- State-of-art methods explore characteristics of the data (images, genomic data, text) at hand as type of features, dimensionality)
- Further issues:
 - Validation:
 - How many clusters is present in the data?
 - Which is the best method?
 - Data dimensionality:
 - distances do not work well on high dimension

tional Genomic

• visualisation is easier in low level space

More details on clustering

- Hastie, Tibshirani and Friedman, The Elements of Statistical Learning, Chapter 14 Institute for Computation
- Bishop, Pattern Recognition and Machine Learning, Chapter 9

Cluster Validation

- How to evaluate clustering results? Which is the best method? How many clusters?
- Internal/relative validation:
 - Measure of cluster coherence:
 - Distance within a cluster -> small (compactness)
 - Distance between clusters -> high (separation)
 - Stability measures:
 - Cluster data in part of the data and compare results
- External validation:
 - Compare clusters with class labels (iris data)
 - Not possible in real word problems!

The silhouette for a given object *i* is defined as:

$$s(i) = \frac{b(i) - a(i)}{max(a(i), b(i))}$$

where

a(i) –mean distance of *i* to objects on same cluster (compactness) d(i,k) – mean distance of *i* to objects of cluster *k* (not own) $b(i) = min_k (d(i,k))$ (separation)

Average of *s*(*i*) -> quality of all results or clusters

Value of 1 indicate perfect solutions!

• silhouette values for hierarchical clustering with Pearson

Average silhouette width : 0.95

silhouette values for hierarchical clustering with Pearson

silhouette values for hierarchical clustering with Pearson

silhouette values for hierarchical clustering with Pearson

Gap statistic - Internal Index

For a given solution with *K* clusters

$$W_{K} = \sum_{k=1}^{K} \sum_{y_{i}=k} \sum_{y_{j}=k} \sum_{y_{j}=k} ||x_{i} - x_{j}||^{2}$$

 W_{K} - measures cluster compactness W_{K} - tends to 0 for increasing K

The Gap Statistic consider clustering of random data W*

$$GAP(k) = E_r[logW_K^*] - logW_K$$

where W^* estimated from clustering random points at the same data space of X

GAP statistics for Iris / Average Linkage with Pearson

GAP statistics for distinct linkage methods

- Help detection of number of clusters / real clusters
 - Do not work perfectly!
- GAP statistics is widely used
 - Requires r data randomisations
 - high computational costs
 - random datasets uniformly distributed (unreal assumption)
- Expert interpretation is important!

Dimension Reduction

- Distances lose meaning at high dimensional space (curse of dimensionality)
- Unspecific Filtering (without class labels):
 - Keep variables with highest variance
 - *rational: im*portant features change values across groups
- Dimensionality Reduction by Transformation:
 - linear: principal component analysis (PCA)
 - Non-linear / manifold learning: t-SNE & UMAP

 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \arg \max \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$
$$\|\mathbf{w}\| = 1$$

• Can be solved by linear algebra / eigen vector decomposition

Recommended reading: Ringner M., *Nature Biotechnology* 26, 303 - 304 (2008)

 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \arg \max \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$
$$\|\mathbf{w}\| = 1$$

• Can be solved by linear algebra / eigen vector decomposition

Recommended reading: Ringner M., *Nature Biotechnology* 26, 303 - 304 (2008)

 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \arg \max \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$
$$\|\mathbf{w}\| = 1$$

• Can be solved by linear algebra / eigen vector decomposition

Recommended reading: Ringner M., *Nature Biotechnology* 26, 303 - 304 (2008)

 For a data X, find linear combination of features (w) capturing most of data variance

$$\mathbf{w}_{(1)} = \arg \max \{ \|\mathbf{X}\mathbf{w}\|^2 \}$$
$$\|\mathbf{w}\| = 1$$

• Can be solved by linear algebra / eigen vector decomposition

Recommended reading: Ringner M., *Nature Biotechnology* 26, 303 - 304 (2008)

PCA - Iris

• Original iris data had 4 variables

PC1 explains most of variance

Non-linear / Manifold methods

 Data might be distributed at particular regions of a high dimensional space

High-dimensional data

(Manifold Learning)

embedding

Manifold methods use topological distance (nearest neighbour graphs)

• t-SNE and UMAP are newer/widely used methods

Adapted from Tenembaum, et al. 2000

Manifold learning and IRIS

- Nice low dimensional visualisation of the data
- Caution: These methods fail capturing global structures (distance between clusters!)

See for more details: https://www.youtube.com/watch?v=9iol3Lk6kyU&t=350s

- PCA analysis is a wide spread technique to reduce dimension!
 - Loses importance of individual variables
- Manifold methods
 - Nice low dimensional representation of data
 - Require parametrisation and loose global distance information

Complete course on manifolds/dimension reduction:

https://www.youtube.com/watch?v=evGm6IJKrDI&t=4421s

Expression at Single Cell Level

Basics Bioinformatics - single cell RNA-seq

CD56

NK

CD14-

Monocyte

Megakaryocytes

CD4+/CD25+ Re

CD25- Naive T

CD4+/CD45 RA+/

CD8+/CD45 RA+

Naive cytotoxic CD8+/CD45 RA+

Naive cytotoxic

some biological changes might not be of interest for your study

Source: Stegle et al. 2015

Cells with high % of mitochondria genes

Remove genes associated to cell cycle

PCA based on cell cycle genes

Data: dendritic cells of Peyer patches with Torrow & Hornef UK Aachen

Remove genes associated to cell cycle

PCA based on cell cycle genes

Other confounding factors: experimental replicates, individual variation

Data: dendritic cells of Peyer patches with Torrow & Hornef UK Aachen

Basic Bioinformatics - single cell RNA-seq

Naive cytotoxi

Basic Bioinformatics - Dimension Reduction

Expression matrix	Read counts				
		Cell 1	Cell 2		
	Gene 1	25	918		
	Gene 2	0	456		
	Gene 3	20	342		
	Gene 4	0	214		

- High dimension matrix:
 - 4945 cells vs. 17328 genes
- Sparse matrix:
 - 50% zeros (90k reads per cell)

Basic Bioinformatics - Dimension Reduction

LO	Read coun	ts				
Expressic matrix		Cell 1	Cell 2			
	Gene 1	25	918			
	Gene 2	0	456			
	Gene 3	20	342			
	Gene 4	0	214			
Reduction with t-SNE or PCA t-SNE Scores						
t-SNE matrix		Cell 1	Cell 2			
	t-SNE1	3.1	0.3			
	t-SNE2	-2.1	2.1			
-						

- High dimension matrix:
 - 4945 cells vs. 17328 genes
- Sparse matrix:
 - 50% zeros (90k reads per cell)

PCA - distance preserving

used for clustering

t-SNE - local neighbourhood preserving

used for visualisation

Basic Bioinformatics - Dimension Reduction

Basic Bioinformatics - Integration

- Usually single cell experiments are performed over distinct conditions
 comparing disease vs. normal / treated vs. Untreated
- distinct experiments have batch effects, i.e. sequencing depth, cell capture

a Clustor

naive integration

- Canonical correlation analysis
- Centroid based correction
- Mutual Information

integrated data

- same/similar cells in same cluster

- condition specific clusters

Basic Bioinformatics - Integration

- Harmony explores centroids from fuzzy clustering and linear correction models for data integration

Adapted from: Korsunsky et al. 2019

Basic Bioinformatics - Integration

- Real world example: blood cells after stimulation

Basics Bioinformatics - Clustering

Gut Immune Cells - 12 groups

Clustering - identify cells with similar expression patterns - based on PCA (20 dimension)

How to identify cell types?

Cell Identity with an Expert

Check expression of:

1. known genes

Cell Identity with an Expert

Institute for Computational Genomics 01011011010 10100100101

Cell Identity with an Expert

Open chromatin with scATAC-seq

0101101110100100

Li, ..., Kramann, Costa, Biorvx, https://doi.org/10.1101/865931.

Computational Challenges - Single Cell ATAC

Computational Challenges - Single Cell ATAC

Resume / Single cell clustering

- Finding groups of single cells require complex pipeline:
 - Cell filtering
 - Normalisation
 - Artefact removal
 - Dimension reduction
 - Integration
 - Clustering
 - Cell annotation / visualisation
- Open points:
 - How to deal with large data sets (millions of cells)?
 - How to detect cells of rare populations?
 - How to deal with sparsity of scATAC seq data?

Clustering of cells / Human Fetal Cell Atlas

scRNA-seq

4.062.980 cells

scATAC-seq

Single-cell chromatin accessibility profiles 790,957 cells

https://descartes.brotmanbaty.org/

- Open points: ٠
 - How to deal with large data sets (millions of cells)? ٠
 - How to detect cells of rare populations? ٠
 - How to deal with sparsity of scATAC seq data? •

Today – Single cell sequencing / Practical Course

3.05.2021 – Project Description / Introduction to HPC clusters and GPUs

10.05.2021 - 5.7.2021 - Project development

12.07.2021 – Project Presentation

Thank you!

