Bioinformatics Lab

Ivan Gesteira Costa, Mingbo Cheng, Zhijian Li, Martin Manolov Institute for Computational Genomics

Objectives

- Hands on introduction to bioinformatics programming
- Review basic biological/computational aspects
 - 1. basics of molecular biology
 - 2. basics of sequencing
 - 3. basics bioinformatics problems
 - short sequences read alignment
 - gene expression quantification
 - computational epigenetic
 - single cell approaches

Objectives

- Introduction to Bioinformatics Frameworks/Tools
 - 1. biological sequence data formats/handling
 - Biopython, Pysam, R/bioconductor
 - 2. bioinformatics tools
 - BWA (aligner), Seurat, Cell Ranger, ...

Grading/Online material

Evaluation:

- 20% prototypes
- 60% final project
- 20% presentation

Extra-work for media informatics:

research report

References/Courses Online

http://costalab.org/teaching/bioinformatics-software-lab-2021/

Introduction to Molecular Biology

- How is genetic information inherited?
- How the genetic information influence cellular processes?
- How genes work together to promote particular molecular functions?

Genetic Information - DNA

DNA (Deoxyribonucleic)

- chain of nucleic acids
- 4 bases: A;C;G;T
- forms DNA duplexes with paring A = T e C = G

Central Dogma - Transcription

Transcription

• DNA to RNA

RNA (ribonucleic acid)

- single stranded
- 4 bases: A;C;G;U
- unstable
- transport of information from nucleus to cytoplasm

Central Dogma - Transcription

Figure 1-5 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Transcription - copy of DNA information to RNA (T to U)

Central Dogma - Translation

Translation

- RNA to Protein
- performed by the ribosome
- follows the genetic code

Proteins

- single stranded chain
- 20 amino acids
- assumes 3D structure
- main functional entities in the cell

Genetic Code - Translation

Figure 6-50 Molecular Biology of the Cell 5/e (© Garland Science 2008)

triples of RNA bases encodes a amino acid

Central Dogma

- Dogma: information flux
 DNA -> mRNA -> Proteins
- Gene: DNA segment coding a protein.
- Transcript: RNA segment associated to a gene.
- Genes is associated to one proteins and one function*

* Genes might be associated to many proteins

Control of Gene Expression

Figure 6-19 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Gene Expression

Gene / Alternative Splicing

Cellular Complexity

Figure 7-1 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Two cells of a organism have exactly* the same DNA

How does this differences arise? How is cell fate remembered?

* with exception of somatic mutations and rearrangements of immunological loci

Cellular Complexity & Gene Expression

Read the bases of a particular DNA/RNA sequence

Applications:

- sequence DNA of known and unknown organism
- detect variants on patients
- sequence the RNA of a cell
- detect location of proteins interacting with DNA or open chromatin

Problem:

- only short DNA sequences (<1.000 bs) can be read

Solution:

break DNA in several small pieces and use bioinformatics

Next Generation Sequencing

- NGS take advantage of parallelization
 - reads millions/billions of reads for a time
 - short reads (50-100 bps)
 - moderate error rates (0.1%)
- commercial products:
 - **454**
 - SOLID
 - Solexa (Illumina)

Illumina Flow Cell - NGS Sequencing

1- fragment sample DNA, insert adapters, attach to flow cell

2- use (bridge) PCR to copy fragments (close to origin)

3- clusters of single stranded DNA (200m clusters with 2k DNA strands

See video http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTX056051.htm

Illumina Flow Cell - NGS Sequencing

- Iterative evaluation process:
 - 1. add RT-bases, polymerases integrate them
 - 2. wash away all not integrated elements
 - 3. take picture of flow cell to determine current base by dye
 - 4. derive reads from pictures

Sequencing Results

This number (Q) can be converted to P

 $P = 10^{(-Q/10)}$

Sequencing Results / Phred scores

Uses letters/symbols to represent numbers:

Single end

Paired end Ins: 200-800 bp

Next Generation Sequencing

Improvements in the rate of DNA sequencing over the past 30 years

Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719-724 (2009).

Sequencing Costs

Sequence Alignment

Sequence Alignment

NGS

- reads from DNA fragments
- position in genome is unknown
- solution: alignment

DNA Sequencing

- de-novo assembly
 - construct unknown reference sequence from scratch
- resequencing / mapping
 - reference sequence given (applies to human- and mousestudies)
 - build sequence that is similar but not necessarily identical to reference sequence

Alignment Problem

- a large reference sequence is given (genome)
 - up to billions of base pairs
- millions of short reads (<200bps)
- find most probable position of the read in the genome (by inexact string matching)

- (Unknown) divergent of sample and reference genome
- Repeats in the genome (larger than read size)
- Recombinations
- Poor genome reference quality
- Sequencing/read errors

Alignment/Mapping is a typical inexact string match problem

Algorithmic Solutions: ?

Alignment/Mapping is a typical inexact string match problem

Algorithmic Solutions:

• Smith & Waterman - dynamic programming (quadratic time/memory)

Alignment/Mapping is a typical inexact string match problem

Algorithmic Solutions:

- Smith & Waterman dynamic programming (quadratic time/memory)
- Blast k-mer search for seeding followed by
 dynamic programming
 - large memory requirement
 - local alignment

Short read alignment is a special problem

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?

Short read alignment is a special problem

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?
- 1. Use a data structure to represent reference
 - k-mer hash table (>40GB for k=8)
 - suffix trees (> 4GB)

Short read alignment is a special problem

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?
- **1. Use a data structure to represent reference**
 - k-mer hash table (>40GB for k=8)
 - suffix trees (> 4GB)
- 2. Find candidate (k-mer) hits on genome (>100)

Short read alignment is a special problem

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?
- **1. Use a data structure to represent reference**
 - k-mer hash table (>40GB for k=8)
 - suffix trees (> 4GB)
- 2. Find candidate (k-mer) hits on genome (>100)
- 3. Improve alignment with Smith-Waterman Methods work on linear time (query sequence)

Hash based algorithm

RNA sequencing / Alignment Results

- Position and strand of reads aligned to the genome

Gene Quantification

- Perform sequencing for each cell (neuron, lymphocyte)
- Align reads to genome

Gene Quantification

- Perform sequencing for each cell (neuron, lymphocyte)
- Align reads to genome
- Count number of reads inside genes (using known genes annotation)

Alignment - Split Read Mapping (RNA-Seq)

 reads needs to be split within intros when mapped to genome (special aligners / STAR)

Quantification - Gene vs. Transcript vs. Exon

Counting Strategies

Gene Level - 17 reads Exon level - exon 1 (8 reads), exon 2 (3 reads), exon 3 (6 reads) Transcript Level - Exons 1,2 & 3 (10 reads) and exon 1 & 3 (7 reads) * * complex computational methods required (TopHAT)

Quantificaiton - Normalization

• Correct for:

- Genes having distinct size
- Sequencing efficiency differs between cell (usually same RNA quantity provided for sequencing)

	Cell A	Cell B	
GeneA (1kb)	20	15	30
GeneB (2kb)	100	300	10
GeneC (1.5kb)	10	20	100
Gene D (3kb)	300	200	100
Total Library	430	535	240

Reads per kilobase million (RPKM) = #reads * gene size* total library1.0001.000.000

Computational Epigenomics

Cell Differentiation

Hematopoiesis

Cell Differentiation

Regulatory Control – Transcription Factor Binding

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Regulatory Control – Transcription Factor Binding

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Epigenetics & Histones

Modification in histone tails - change strength of DNA binding - recruit transcription factors

Chromatin, Regulation and Cellular Memory

Adapted from Lodish, B. et al. (2004) 5th ed.

Chromatin & Histone Code

Chromatin with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Bioinformatics Pipeline / ATAC-seq

Adapted from Rasmussen: http://www.cbs.dtu.dk/courses/27626/programme.php

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2 4

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Peak calling in ATAC-seq

- MACS2
 - most frequently used
- HMMRATAC
 - ATAC-seq specific peak caller
 - ignores reads from large fragments / linker cleavage sites

Bioinformatics Pipeline / ATAC-seq

Adapted from Rasmussen: http://www.cbs.dtu.dk/courses/27626/programme.php

Motif Search – Computational Approach

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

PU.1 Position

Weight Matrix (PWM)

N	IuMH	IC I	Α	G	G	A	A	C	T
Η	u M xA	4	G	G	G	A	A	С	A
→ H	uIFN	-β	A	G	A	A	A	G	Т
N	luβ ₂ m	l	A	G	G	A	A	С	Т
Η	uGBI	P	G	A	G	A	A	G	Т
Η	istone	e H4	A	G	G	A	A	G	С
H	HuIFN-α			G	G	A	A	С	С
		_	↓ ↓	¥	¥	V	V	¥	↓
		A	5	1	1 '	7	7	3	1
		С	0	0	0	0	0	0 2	2
		G	2	6	6	0	0	4	0
		Т	0	0	0	0	0	0	4

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

> PU.1 Position Weight Matrix (PWM)

> > PU.1 Logo

Institute for Computational Genomics 01011011010 10100100101

PU.1 PWM

Genome TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM Genome TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA Score 10.06

PU.1 PWM[#]

PU.1 PWM[#]

PU.1 PWM[#]

Genome Position (bp)

Example: Binding sites in ID2

Motif search for binding sites with 536 PWMs (Jaspar & Uniprobe) and FDR=0,01

> 3000 predicted binding sites

Open Chromatin and TF Binding with ATAC-seq

- Review basic biological/computational aspects
 - 1. basics of molecular biology
 - 2. basics of sequencing
 - 3. basics bioinformatics problems
 - short sequences read alignment
 - gene expression quantification
 - computational epigenetic
 - single cell approaches (next week)

Today – Introduction to Bioinformatics, Next Generation Sequencing

26.04.2021 – Single cell sequencing / Practical Course

3.05.2021 – Project Description / Introduction to HPC clusters and GPUs

- 10.05.2021 5.7.2021 Project development
- 12.07.2021 Project Presentation

Communication/discord channel: https://discord.gg/jycmaCUkAj

Thank you!

