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Objectives

• Hands on introduction to bioinformatics programming 

• Review basic biological/computational aspects 

1.basics of molecular biology 
2.basics of sequencing 
3.basics bioinformatics problems 

• short sequences read alignment 
• gene expression quantification 
• computational epigenetic 
• single cell approaches 
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Objectives
• Introduction to Bioinformatics Frameworks/Tools 

1.biological sequence data formats/handling 
• Biopython, Pysam, R/bioconductor 

2.  bioinformatics tools 
• BWA (aligner), Seurat, Cell Ranger, … 
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Grading/Online material 

Evaluation:  
• 20% prototypes  
• 60% final project  
• 20% presentation 

Extra-work for media informatics:  
• research report 

References/Courses Online 
http://costalab.org/teaching/bioinformatics-software-lab-2021/ 

https://www.costalab.org/teaching/software-lab-in-bioinformatics-2021/
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Introduction to Molecular Biology
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Understanding Live in a Molecular Level

How is genetic information inherited? 

How the genetic information influence cellular 
processes? 

How genes work together to promote particular 
molecular functions? 
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Genetic Information - DNA 

DNA (Deoxyribonucleic)  
• chain of nucleic acids 
• 4 bases: A;C;G;T 
• forms DNA duplexes with 

paring A = T e C = G
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Central Dogma - Transcription

Transcription  
•  DNA to RNA 

RNA (ribonucleic acid) 
• single stranded 
• 4 bases: A;C;G;U 
• unstable 
• transport of 

information from 
nucleus to cytoplasm 
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Central Dogma - Transcription

Transcription -  copy of DNA information to RNA (T to U)
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Central Dogma - Translation

Translation  
• RNA to Protein 
• performed by the 

ribosome 
• follows the genetic 

code 
Proteins 

• single stranded chain 
• 20 amino acids 
• assumes 3D structure 
• main functional 

entities in the cell
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Genetic Code - Translation

triples of RNA bases encodes a amino acid
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Central Dogma

• Dogma: information flux     
DNA -> mRNA  -> Proteins 

• Gene: DNA segment coding 
a protein. 

• Transcript: RNA segment 
associated to a gene. 

• Genes is associated to one 
proteins and one function* 

* Genes might be associated to many proteins
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Control of Gene Expression

How is the expression 
of genes controlled? 

Certain proteins 
(transcription factors) 
bind to DNA and 
initiate transcription 
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Gene Expression 
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Gene / Alternative Splicing
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Cellular Complexity

Two cells of a organism have exactly* the same DNA 

How does this differences arise?  
How is cell fate remembered? 

* with exception of somatic mutations and rearrangements of immunological loci 

Neuron Lymphocyte



010110110101
101001001010

Institute for  
Computational Genomics

Cellular Complexity & Gene Expression

Gene 1

Gene 2

Gene 3

Gene 4
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Sequencing

Read the bases of a particular DNA/RNA sequence 

Applications: 
• sequence DNA of known and unknown organism 
• detect variants on patients 
• sequence the RNA of a cell 
• detect location of proteins interacting with DNA or open chromatin 
Problem: 
- only short DNA sequences (<1.000 bs) can be read 
Solution:  
break DNA in several small pieces and use bioinformatics
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Next Generation Sequencing 
! NGS take advantage of parallelization  

! reads millions/billions of reads for a time 
! short reads (50-100 bps) 
! moderate error rates (0.1%)   

! commercial products: 
! 454 
! SOLiD 
! Solexa (Illumina) 
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Illumina Flow Cell - NGS Sequencing

1- fragment sample DNA, 
insert adapters, attach to flow 
cell  

2- use (bridge) PCR to copy 
fragments (close to origin) 

3- clusters of single stranded 
DNA (200m clusters with 2k 
DNA strands

See video http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTX056051.htm 

http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTX056051.htm
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Illumina Flow Cell - NGS Sequencing
• Iterative evaluation process: 

1. add RT-bases, polymerases integrate them 
2. wash away all not integrated elements  
3. take picture of flow cell to determine current base by dye 
4. derive reads from pictures

1 2 3 4
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Sequencing Results
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Sequencing Results / Phred scores

Uses letters/symbols to represent numbers:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJ

Q0 Q10 Q20 Q30 Q40 

bad maybe ok good excellent 
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Read Types
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Next Generation Sequencing
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Sequencing Costs 
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Sequence Alignment 

NGS  
• reads from DNA fragments 
• position in genome is unknown 
• solution: alignment 
DNA Sequencing 
• de-novo assembly 

• construct unknown reference sequence from scratch 
• resequencing / mapping 

• reference sequence given (applies to human- and mouse-
studies) 

• build sequence that is similar but not necessarily identical 
to reference sequence 
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Alignment Problem

- a large reference sequence is given (genome)  
• up to billions of base pairs 

- millions of short reads (<200bps) 
- find most probable position of the read in the 
genome (by inexact string matching)
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Pitfals

- (Unknown) divergent of sample and reference 
genome 
- Repeats in the genome (larger than read size) 
- Recombinations 
- Poor genome reference quality 
- Sequencing/read errors 
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Algorithms - Alignment

Alignment/Mapping is a typical inexact string match 
problem  

Algorithmic Solutions: ? 
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Algorithms - Alignment

Alignment/Mapping is a typical inexact string match 
problem  

Algorithmic Solutions:  
• Smith & Waterman - dynamic programming 

(quadratic time/memory) 
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Algorithms - Alignment

11th and 13th most cited papers ever!!!

Alignment/Mapping is a typical inexact string match 
problem  

Algorithmic Solutions: 
• Smith & Waterman - dynamic programming 

(quadratic time/memory) 
• Blast - k-mer search for seeding followed by 

dynamic programming   
• large memory requirement 
• local alignment
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Algorithms - Alignment

Short read alignment is a special problem 
• reference sequence is large and fixed 
• query sequence (reads) are short and many 
Solution: ?



010110110101
101001001010

Institute for  
Computational Genomics

Algorithms - Alignment

Short read alignment is a special problem 
• reference sequence is large and fixed 
• query sequence (reads) are short and many 
Solution: ? 
1. Use a data structure to represent reference 

• k-mer hash table (>40GB for k=8) 
• suffix trees (> 4GB) 
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Algorithms - Alignment

Short read alignment is a special problem 
• reference sequence is large and fixed 
• query sequence (reads) are short and many 
Solution: ? 
1. Use a data structure to represent reference 

• k-mer hash table (>40GB for k=8) 
• suffix trees (> 4GB) 

2. Find candidate (k-mer) hits on genome (>100) 



010110110101
101001001010

Institute for  
Computational Genomics

Algorithms - Alignment

Short read alignment is a special problem 
• reference sequence is large and fixed 
• query sequence (reads) are short and many 
Solution: ? 
1. Use a data structure to represent reference 

• k-mer hash table (>40GB for k=8) 
• suffix trees (> 4GB)  

2. Find candidate (k-mer) hits on genome (>100) 
3. Improve alignment with Smith-Waterman 

Methods work on linear time (query sequence) 
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Hash based algorithm
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RNA sequencing / Alignment Results 
- Position and strand of reads aligned to the genome 

Alignment

gene A gene C Genomes

gene B 

Reads

Genome
positive strand

negative strand
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Gene Quantification 
• Perform sequencing for each cell (neuron, lymphocyte) 
• Align reads to genome

gene A gene C Genome

gene B 

Neuron

Lymphocyte
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Gene Quantification 
• Perform sequencing for each cell (neuron, lymphocyte) 
• Align reads to genome 
• Count number of reads inside genes (using known genes annotation)

gene A gene C Genome

gene B 

Neuron

Lymphocyte

0

135

25

12

13
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Alignment - Split Read Mapping (RNA-Seq)

• reads needs to be split within intros when  mapped to 
genome (special aligners / STAR)

Exon A Exon B Exon C
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Quantification - Gene vs. Transcript vs. Exon

Gene Level - 17 reads 
Exon level - exon 1 (8 reads), exon 2 (3 reads), exon 3 (6 reads) 
Transcript Level - Exons 1,2 & 3 (10 reads) and exon 1 & 3 (7 reads) * 
* complex computational methods required (TopHAT)

Counting Strategies
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Quantificaiton - Normalization
• Correct for: 

• Genes having distinct size 
• Sequencing efficiency differs between cell (usually same RNA 

quantity provided for sequencing)

Cell A Cell B …
GeneA (1kb) 20 15 30
GeneB (2kb) 100 300 10
GeneC (1.5kb) 10 20 100
Gene D (3kb) 300 200 100
Total Library 430 535 240

Reads per kilobase million (RPKM) = #reads * gene size * total library 
1.000 1.000.000
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 Computational Epigenomics 
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Source: Amit (2016), Nature Immunoloy. 
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Which cells are there?  
Which transcription factors controls cell specification?

Source: Amit (2016), Nature Immunoloy. 
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Regulatory 
Sequence

Promoter

transcription factors
transcription 

 factors 

tatattattaacttcctggacttcctggaggagggaggcttatgaggcttatcatcattctctctctttattatatggatgtggatgattctaagtacccagcattctaagtaccagctaataaaatcaaa

Regulatory Control – Transcription Factor Binding

Source:  Alberts, B. et al. (2008) Garland Science, 5th ed. 
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Regulatory 
Sequence

Promoter

Pu.1 Motif

transcription factors
transcription 

 factors 

tatattattaacttcctggacttcctggaggagggaggcttatgaggcttatcatcattctctctctttattatatggatgtggatgattctaagtacccagcattctaagtaccagctaataaaatcaaa

Regulatory Control – Transcription Factor Binding

PU.1

GGAA

Source:  Alberts, B. et al. (2008) Garland Science, 5th ed. 
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Epigenetics & Histones

Sources: Lodish, H. et al. (2004) WHFreeman, 5th ed.

Modification in histone tails 
- change strength of DNA binding 
- recruit transcription factors 

histone tails



Chromatin, Regulation and Cellular Memory

Adapted from Lodish, B. et al. (2004) 5th ed. 

ActivatorsRepressors

GENE
“OFF”

GENE
“ON” Mediator

RNA
polymerase

Activators

General
transcription
factors

Condensed
chromatin

Decondensed
chromatin

gene  

monocytes

  T - cell 
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Chromatin & Histone Code 

ActivatorsRepressors

GENE
“OFF”

GENE
“ON” Mediator

RNA
polymerase

Activators

General
transcription
factors

Condensed
chromatin

Decondensed
chromatin

gene  

Histone Code 

H3K79me2, H3k36me3

H3K27ac,  H3K9ac  

H3K27me3, H3K9me3

Transcription

Active Regions

Repressed regions

Active Promoters
H3K4me3  

Active Enhancers

H3K4me1 
monocyte

  T - cell 
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Chromatin with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.
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Chromatin with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Protocol for measuring open chromatin 
Active regulatory regions 



Sequencing 

Alignment 

ATAC-seq signal.   

Chromatin

DNase-seq signal

Transcription factor footprints

Nucleosome

H3K4me3

DNase I 

Transcription Factors

Tn5 cleavage

Open Chromatin with ATAC-seq 
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Sequencing 

Alignment 

ATAC-seq signal.   

Chromatin

DNase-seq signal

Transcription factor footprints

Nucleosome

H3K4me3

DNase I 

Transcription Factors

Tn5 cleavage

Open Chromatin with ATAC-seq 

Signal Generation

Peak Calling

Alignment
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Bioinformatics Pipeline / ATAC-seq 

Sequencing Pre-processing 
Quality check Alignment Peak Calling 

Signal Generation
Dif. Peak Calling 
Footprinting
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Adapted from Rasmussen:  
http://www.cbs.dtu.dk/courses/27626/programme.php
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

2

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

2 4

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

2 4 8

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:



010110110101
101001001010

Institute for  
Computational Genomics

Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

2 4 8 …

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

2 4 8 …

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts

Counts:
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Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

Counts

2 4 8 …

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Counts:
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Counts:

Peak Calling

Problem definition: Find genomic regions (of arbitrary size) with more 
aligned reads  than expected by chance.

Example of a simple peak caller : 
1. use a fix window to scan through 

the genome and obtain a 
distribution of counts per bin 

2.  define a statistical test to evaluate 
if the number of reads in higher 
than expected by change

Aligned Reads

Counts

2 4 8 …

See for an example of a code for a peak caller  
http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/ 

Problems: 
- which window size to use?   
- proper quantification of read counts 

require several further steps: CG bias 
correction, duplicated reads, 
mappability, fragment size, …
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Peak calling in ATAC-seq 

- MACS2  
-  most frequently used 

- HMMRATAC  
- ATAC-seq specific peak caller  
- ignores reads from large fragments / linker cleavage sites

Source: Yan, Genome Biology, 2020.
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Bioinformatics Pipeline / ATAC-seq 

Sequencing Pre-processing 
Quality check Alignment Peak Calling 

Signal Generation

Dif. Peak Calling 
Motif search 
Footprinting
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Adapted from Rasmussen:  
http://www.cbs.dtu.dk/courses/27626/programme.php
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Regulatory 
Sequence

Promoter

Pu.1 Motif

Problems 
− motifs are small and degenerate (6-8 

conserved positions) 
− distal binding sites (>106 from genes) 
− only part of motifs are known 

Too many false positive predictions!

transcription factors
transcription 

 factors 

tatattattaacttcctggacttcctggaggagggaggcttatgaggcttatcatcattctctctctttattatatggatgtggatgattctaagtacccagcattctaagtaccagctaataaaatcaaa

Motif Search – Computational Approach

PU.1

GGAA

Source:  Alberts, B. et al. (2008) Garland Science, 5th ed. 
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Model for DNA-protein binding

PU.1 binding sites
Kanno, Y. et al. (2005) Immune 
Cell-Specific Amplification of 
Inter feron Signal ing by the 
IRF-4/8-PU.1 Complex.

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC

MuMHC I
HuMxA
HuIFN-β
Muβ2m
HuGBP
Histone H4
HuIFN-α
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Model for DNA-protein binding

PU.1 binding sites
Kanno, Y. et al. (2005) Immune 
Cell-Specific Amplification of 
Inter feron Signal ing by the 
IRF-4/8-PU.1 Complex.

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC

MuMHC I
HuMxA
HuIFN-β
Muβ2m
HuGBP
Histone H4
HuIFN-α

T 0000004

A
C
G

5117731
0000002
2660040

PU.1 Position 
Weight Matrix 
(PWM)
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Model for DNA-protein binding

PU.1 binding sites
Kanno, Y. et al. (2005) Immune 
Cell-Specific Amplification of 
Inter feron Signal ing by the 
IRF-4/8-PU.1 Complex.

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC

MuMHC I
HuMxA
HuIFN-β
Muβ2m
HuGBP
Histone H4
HuIFN-α

T 0000004

A
C
G

5117731
0000002
2660040

PU.1 Position 
Weight Matrix 
(PWM)

PU.1 Logo
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Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome
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Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome
Score 10.06
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Genome
10.06

4.81
3.19Score 
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Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome

…10.06
4.81

3.19Score 
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Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome

…10.06

FDR = 1 x 10-4

GGAAGT GAAAGT

4.81
3.19

FDR- False 
Discovery 
Rate

Statistical 
Test

Score 
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Motif Search 

TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM

Genome

…10.06

FDR = 1 x 10-4

GGAAGT GAAAGT

4.81
3.19

FDR- False 
Discovery 
Rate

Statistical 
Test

Score 

Background distribution 
• bitscore of all sequences with size equal to motif 
• efficient estimation with dynamical programming



010110110101
101001001010

Institute for  
Computational Genomics

Example: Binding sites in ID2

Motif search for binding sites with  536 PWMs (Jaspar & 
Uniprobe) and FDR=0,01

> 3000 predicted binding sites
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Alignment 
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DNase-seq signal

Transcription factor footprints
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Transcription Factors

Tn5 cleavage
Chromatin

DNase-seq signal

Transcription factor footprints

Nucleosome

H3K4me3

DNase I 

Transcription Factors

Tn5

Open Chromatin and TF Binding with ATAC-seq 

signal & Peak       

TF motifs
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Resume

• Review basic biological/computational aspects 

1.basics of molecular biology 
2.basics of sequencing 
3.basics bioinformatics problems 

• short sequences read alignment 
• gene expression quantification 
• computational epigenetic 
• single cell approaches (next week)
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Calendar

Today – Introduction to Bioinformatics, Next Generation 
Sequencing  
26.04.2021 –  Single cell sequencing / Practical Course 
3.05.2021 – Project Description / Introduction to HPC clusters and 
GPUs 
10.05.2021 – 5.7.2021 – Project development 
12.07.2021 – Project Presentation 

Communication/discord channel: https://discord.gg/jycmaCUkAj 
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Thank you!


