
Introduction to Programming in R

Ivan G. Costa & Tiago Maie
Institute for Computational Genomics
Joint Research Centre for Computational Biomedicine
RWTH Aachen University, Germany

Complex Data Structures

• Vector – variable containing a array of items
of the same type

• Matrix – two dimensional vector with items
of the same type

• Data Frame – complex data structure for two
dimensional data where columns can be of
distinct type (as an Excel sheet) (today!)

• Factors, Lists, …

Data Frames
• Data frames hold a spreadsheet like table. The observations

are the rows and the covariates are the columns. Columns
share the same type.

• Data frames can be operated as matrices and be indexed
with two subscripts.

Data Frames
• Creation and manipulation

> data = data.frame(
 name = c("Ivan","Tiago","Carola","Anne"),
 department = c("Costa","Costa","Wagner","Wagner"),
 labhour = c(0, 8, 20, 20))
> data
 name department labhour
1 Ivan Costa 0
2 Tiago Costa 8
3 Carola Wagner 20
4 Anne Wagner 20
> data$department # access department column of frame
[1] Costa Costa Wagner Wagner
Levels: Costa Wagner
> data[,"department"] # access department column of frame
> data[,2] # second column of data frame

Data Frames
• Creation and manipulation

> data[1,] # first line of the data frame
name department labhour
1 Ivan Costa 0
> rownames(data) # row names
[1] "1" "2" "3" "4"
> rownames(data) = data$name
make people names as row names
> data["Ivan",] # find entries by first name
 name department labhour
Ivan Ivan Costa 0

Data Frames
• Creation and manipulation

> data$labhour > 8 # lab hours exceeding 8
[1] FALSE FALSE TRUE TRUE
> data[data$labhour > 8,]
data from members with more than 8 hours
 name department labhour
3 Carola Wagner 20
4 Anne Wagner 20
> data[data$department=="Costa",]
data from members of Costa dept.
 name department labhour
1 Ivan Costa 0
2 Tiago Costa 8

Factor
• A list of categorical nature
• i.e. gender (male, female), department (wagner, costa),

tumour type (…), cell type (…).
• Important for statistical tests and plots

> data$department
[1] Costa Costa Wagner Wagner
Levels: Costa Wagner
> levels(data$department)
[1] "Costa" "Wagner"
> levels(data$department)=c("AG Costa","AG Wagner")
> data$department
> table(data$department)
 AG Costa AG Wagner
 2 2

List
• An ordered collection of variables of distinct types under one

variable (similar to a data frame for a single observation).

example of a list with 3 components
> w = list(name="Fred", age=5.3, sex="male")
> w[[1]] # access the first variable of the list
[1] "Fred"
> w$name # access the variable "name" of the list
[1] "Fred"
> w[["age"]] # access the variable age of the list
[1] 5.3

Exercises 1

1. Create a data frame with all members of your lab
(or Class colleagues). Include information as age,
gender, height (you can imagine this).

2. Create operations to list the name of all colleagues

with age higher than 30.

3. Update your method to list only male members
with age higher than 30.

Exercises 2 (optional)

1. Use lists to redo the fruit shop exercise from the
past day.

2. Can you tell the advantage of using lists instead of
vectors?

Plotting and Statistics
• R provides several functions for plotting and statistical

analysis of data

• Example data
• ~300 samples of blood,

iPSC and fibroblast cells
• 2 marker genes

• We will show how to perform scatter plots, pie charts, bar
plots and statistical tests in this data

• Go to the handout!

Own functions

Own Function
• Programming languages allow to define own functions. This

is useful when you want to create a code describing a task
that needs to be repeated (write a table as file, complex
arithmetic calculation).

myfunction <- function(arg1, arg2, ...){  
 variable = statements  
 return(variable)  
}

Name of the function Input arguments

Return value

Own Function - Examples

• Example of function for summing up 3 numbers

> sum3 <- function(a, b, c){
 # creates a function and stores in memory
 result = a + b + c;
 return(result)
 }
> sum3(3,4,5)
[1] 12
> sum3(1,2,3)
[1] 6

myfunction <- function(arg1, arg2, ...){  
 variable = statements  
 return(variable)  
}

Exercise 1

• Create a function that receives 2 numbers and
return their multiplication.

• Create a function that receives 4 numbers (or a
vector of numbers) and returns a list with the
minimum and the maximum values.

Exercise 2

• Create a function that takes degrees and
returns radios. Use it to compute radian values
for 90, 45 and 0 degrees (i.e. there is a variable
pi in R)

Exercise 3

• Create a function that converts Celsius to
Fahrenheit degrees. Estimate the Fahrenheit
for 40 or 0 degrees (Celsius).

• This is the conversion formula.

Control Commands

Control Commands

•Algorithms are usually not sequential.
•Control commands
- test to decide the next steps

- if-else command
- Repeating commands until a condition is

satisfied
- for and while

if command

if (<logical test>){  
 statements # executed only if test is true 
}

> grade = 6
> if (grade >= 6){
 print("fail")
 }
[1] "fail"
> grade = 4
> if (grade >= 6){
 print("fail")
 }

• only executed if condition is true

Algorithm Analysis

Task - back a cake
Language - English
Exact - ???
Well defined - ???

if-else command

if (<logical test>){  
 statements # executed only if test is true 
}else{
 statements # executed only if test is false 
}

> grade = 4
> if (grade >= 6){
 print("fail")
 }else{
 print("pass")
 }
[1] "pass"

if-else function

ifelse(vector conditions, expression 1, expression 2)

> ifelse(data$labhour > 8,"Biologist","Bioinformatician")
 [1] "Bioinformatician" "Bioinformatician"
 [3] "Biologist" “Biologist"

> ifelse(data$labhour > 8, c(1,2,3,4), c(5,6,7,8))
[1] 5 6 3 4

Note that expressions can also be lists

• an if-else function variant that evaluates a vector of
conditions

For command

For (value in sequence){  
 statements # executed for every value in sequence 
}

> lab_members = c("Ivan","Tiago","Carola","Anne")
> for (name in lab_members) {
 print(name)
 }
[1] "Ivan"
[1] "Tiago"
[1] "Carola"
[1] "Anne"

• Repeats statement while interacting with a list

For command examples
> range = 1:6 # command that creates a vector from 1 to 6
> for (i in range) {
 print(i)
 }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
> value = 1
> for (i in range){
 value = value * i # computes the factorial of 6
 }
> value
[1] 720

For command examples

> data =data.frame(name=c("Ivan","Sonja","Carola","Anne"),
 department=c("Costa","Costa","Wagner","Wagner"),
 labhour=c(0,8,20,20))
> rownames(data)=data$name # makes name the identifier for
each row.
> data["Ivan",]
> for (n in data$name){
 if (data[n,]$labhour > 8){
 print(data[n,]);
 }
 }

> data[data$labhour > 8,]

For command examples

• What about previous example?

> data = data.frame(name=c("Ivan","Sonja","Carola","Anne"),
 department=c("Costa","Costa","Wagner","Wagner"),
 labhour=c(0,8,20,20))
> rownames(data) = data$name # makes name the identifier for
each row.
> data["Ivan",]
> for (n in data$name){
 if (data[n,]$labhour > 8){
 print(data[n,]);
 }
 }

Exercises

1. Write a loop that print numbers 4, 6, 8 and 10 at the screen.

2. Write a loop that counts 1 to 10 and this is repeated 3 times.

3. Write a loop that writes all numbers from 1 to 35 but skips
the numbers 3,9,13,19,23,29. Tips: you can use the operator
%in% to check if a value is in a list and you need a loop
and a if for this problem.

4. Create a function in R to provide the factorial value of a
number (using loops).

factorial(x) = factorial(x-1)*x

Want more?

More training material:

https://rafalab.github.io/dsbook/r-basics.html#exercises-2
https://www.datamentor.io/r-programming/#tutorial

https://rafalab.github.io/dsbook/r-basics.html#exercises-2

Inst. for Computational Genomics
• Ivan G. Costa
•Tiago Maie
•Joseph Kuo

