Bioinformatics Lab

Ivan Gesteira Costa & Martin Manolov Institute for Computational Genomics

Machine Learning / Classification

Gene expression data imposes challenges to classification:

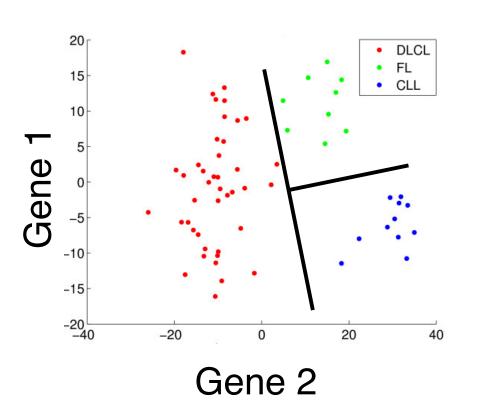
 no. of dimensions is higher (or similar) than number of samples

We need robust experimental approaches for:

- -measuring the accuracy of ML methods
- -finding best parameters of ML methods
- -compare the performance of distinct methods.

Machine Learning - Classifier

cancer type classification



Data:

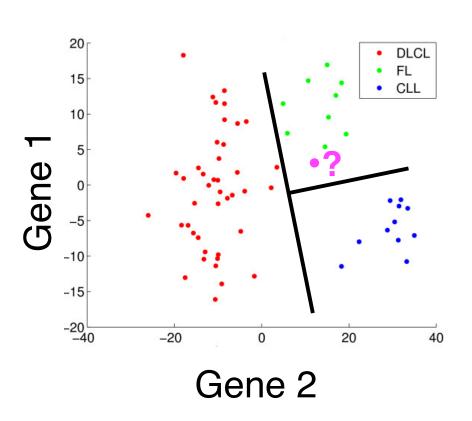
Expression matrix X (genes vs samples) classification vector Y (diagnosis)

Find a function:

$$f(x) \rightarrow y$$

Machine Learning - Classifier

cancer type classification



Data:

Expression matrix X (genes vs samples) classification vector Y (diagnosis)

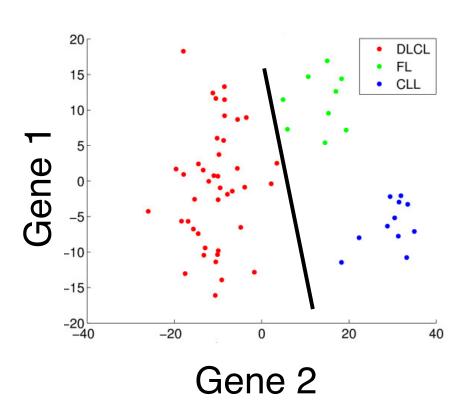
Find a function:

$$f(x) \rightarrow y$$

For new samples X':

$$f(x') \rightarrow y'$$

Linear Classifier



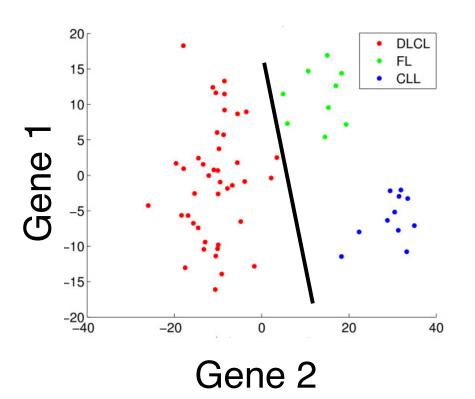
Linear Function:

$$f(x, A) = a_0 + a_1 x_1 + ... + a_L x_L$$

 $f(x, A) > 0 \Rightarrow \text{classe A}$
 $f(x, A) \le 0 \Rightarrow \text{classe B}$

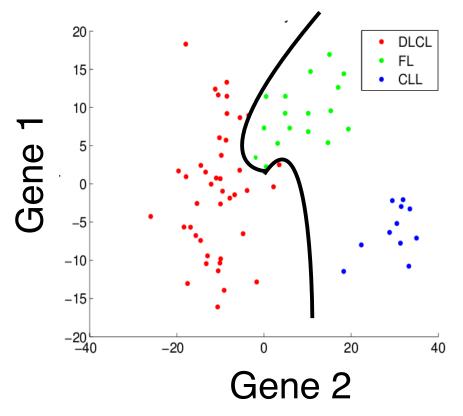
- Works for 2 classes only
 - train a function for each cancer type
- Find coefficients
 - with linear programming/ neural network

Linear Classifier - Problems



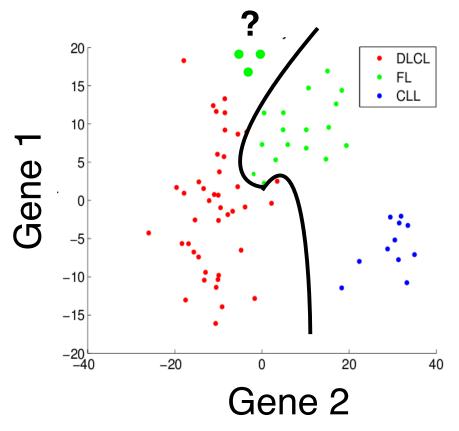
- Most real word problems are not linearly separable!
- There will be always some error!
- Solution: non-linear functions

Nonlinear Classifier - Problems



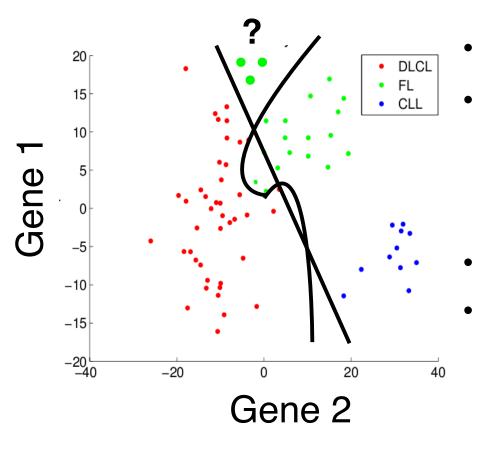
- Polinomial Function
- $f(x, A) = a_0 + a_{11}x_{11}^3 + \dots + a_{L1}x_{L}^3$ $a_{12}x_{11}^2 + \dots + a_{L2}x_{L}^2$ $a_{12}x_{11}^2 + \dots + a_{L2}x_{L}^2$
- Third order polynomial
- Problem: overfitting

Nonlinear Classifier - Problems



- Polinomial Function
- $f(x, A) = a_0 + a_{11}x_{11}^3 + \dots + a_{L1}x_{L}^3$ $a_{12}x_{11}^2 + \dots + a_{L2}x_{L}^2$ $a_{12}x_{11}^2 + \dots + a_{L2}x_{L}^2$
- Third order polynomial
- Problem: overfitting

Nonlinear Classifier - Problems



Polinomial Function

$$f(x, A) = a_0 + a_{11}x_{11}^3 + \dots + a_{L1}x_{L}^3$$

$$a_{12}x_{11}^2 + \dots + a_{L2}x_{L}^2$$

$$a_{12}x_{11}^2 + \dots + a_{L2}x_{L}^2$$

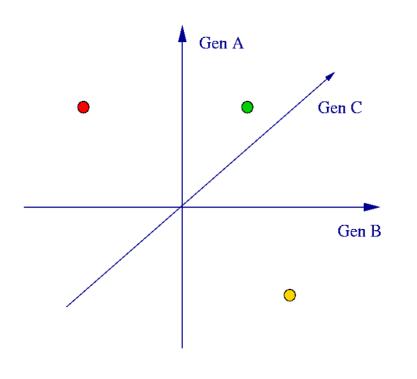
Third order polynomial

Problem: overfitting

Curse of Dimensionality

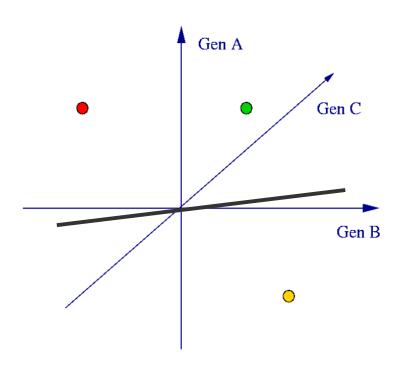
- Size of a Euclidean space grows exponentially with dimension
 - number of genes
- Dots (patients) are sparsely distributed in space

Sparse data: no of samples < no of dimensions



- three genes
- 2 patients with known cancer type(red/yellow)
- 1 unknown cancer type(green)

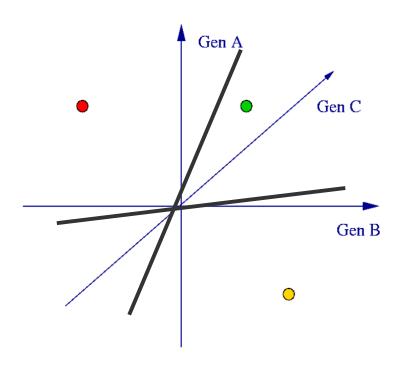
Sparse data: no of samples < no of dimensions



- three genes
- 2 patients with known cancer type(red/yellow)
- 1 unknown cancer type(green)

Perfect classifier (on training!)

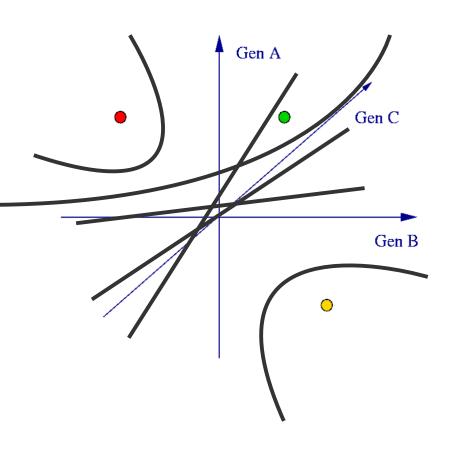
Sparse data: no of samples < no of dimensions



- three genes
- 2 patients with known cancer type(red/yellow)
- 1 unknown cancer type(green)

More perfect classifiers (on training!) Hard to generalize 1

Sparse data: no of samples < no of dimensions



- There are millions of perfect linear classifiers
- And even if non-linear classifiers are considered!

Dealing with Curse of Dimensionality

- Have a proper training / test evaluation procedure
- Use simple classifiers
- Reduce the dimension of your data:
 - feature selection
 - PCA or tSNE (black box!)

Classifier Evaluation

1.Statistics to measure the classification performance

- 2. Data splitting strategies to avoid overfitting
- ML learns training data but do not generalize to unseen data

Classification Metrics

Measures for two class problem

Predicted Class + - FN Type II error TN Type Lerror

Accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

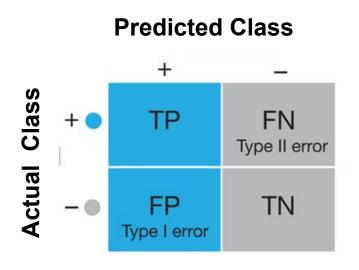
F1 Score = $\frac{2*TP}{2*TP + FP + FN}$

Precision = $\frac{TP}{TP + FP}$

Sensitivity/Recall = $\frac{TP}{TP + FN}$

Classification Metrics

Measures for two class problem



Accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

F1 Score = $\frac{2*TP}{2*TP + FP + FN}$

Precision = $\frac{TP}{TP} + \frac{TP}{TP}$

Sensitivity/Recall = TP / TP + FN

Extension for multi class:

evaluate class vs. others / use average accuracy / F1.

Class imbalance:

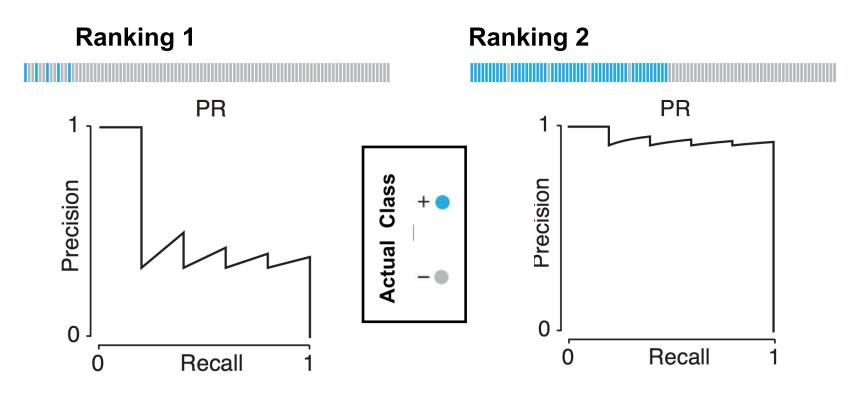
 usually number of negatives is larger / classifiers with low Precision might still have high Acc/Sensitivity

Source: Lever et al., Nat. Methods (2016)

Classification Metrics / Class Imbalance

Precision - Recall (PR) curves

requires ranking of classification, i.e. class probability



- area under the PR curve -> higher area indicates best classifiers!

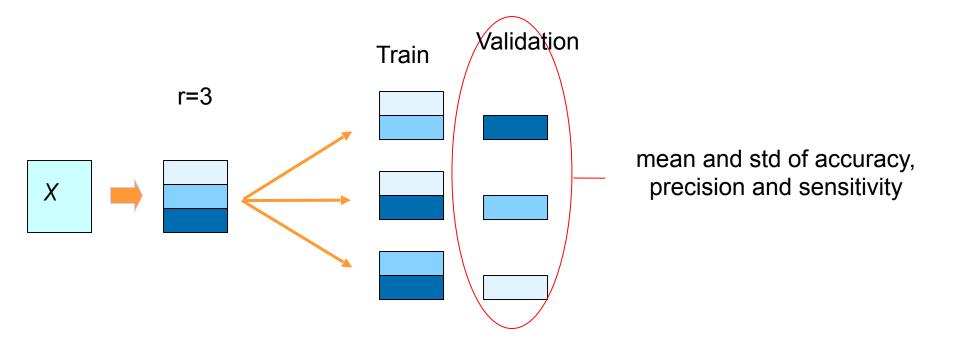
Source: Lever et al., Nat. Methods (2016)

Classifier Evaluation

- The performance of your classifier needs to be evaluated at test data:
 - an independent "test data set"
 - cross-validation

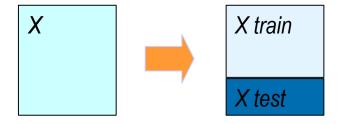


Cross-validation



Classifier Evaluation

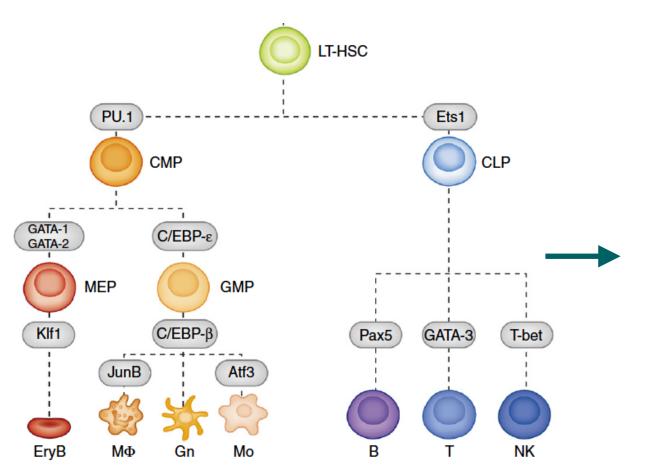
- The performance of your classifier needs to be evaluated at test data:
 - an independent "test data set"
 - cross-validation



- Never use test data to improve classification (choose a better classifier or marker gene)
 - For this you need to establish validation data (or nested cross- validation approach)

Problem Definition

Cell Differentiation & Gene Expression

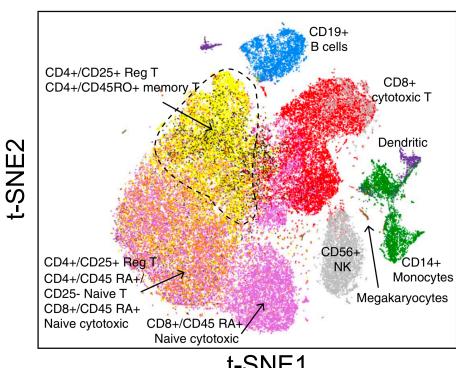


	Cell 1	Cell 2	
Gene 1	25	918	
Gene 2	0	456	
Gene 3	20	342	
Gene 4	0	214	

Source: Amit (2016), Nature Immunoloy.

Gene Expression of Lymphoid Cells

PBMCs from Humans



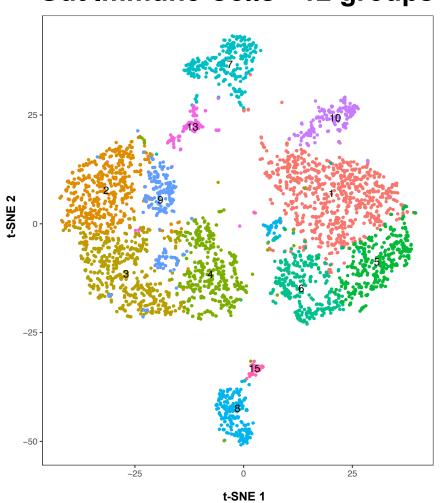
t-SNE1

Single cell RNA-seq from 68k cells

Institute for **Computational Genomic**

Basics Bioinformatics - Clustering

Gut Immune Cells - 12 groups

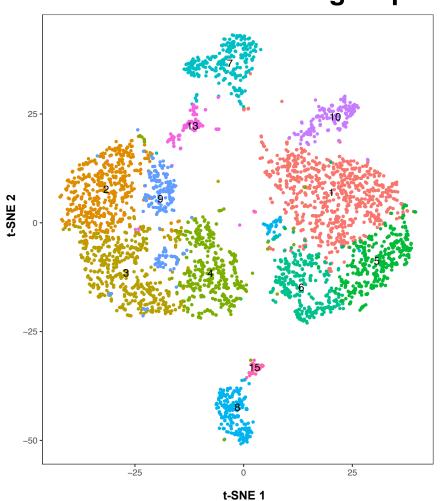


Clustering - identify cells with similar expression patterns - based on PCA (20 dimension)

How to identify cell types?

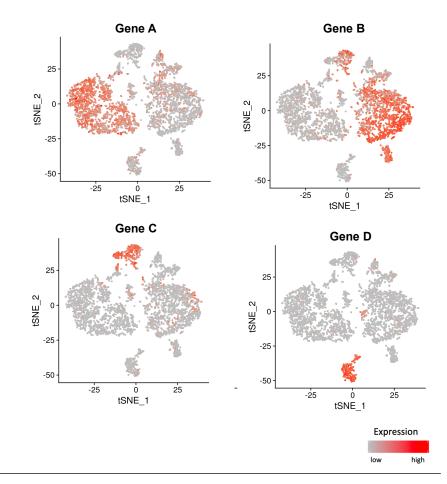
Cell Identity with an Expert

Gut Immune Cells - 12 groups

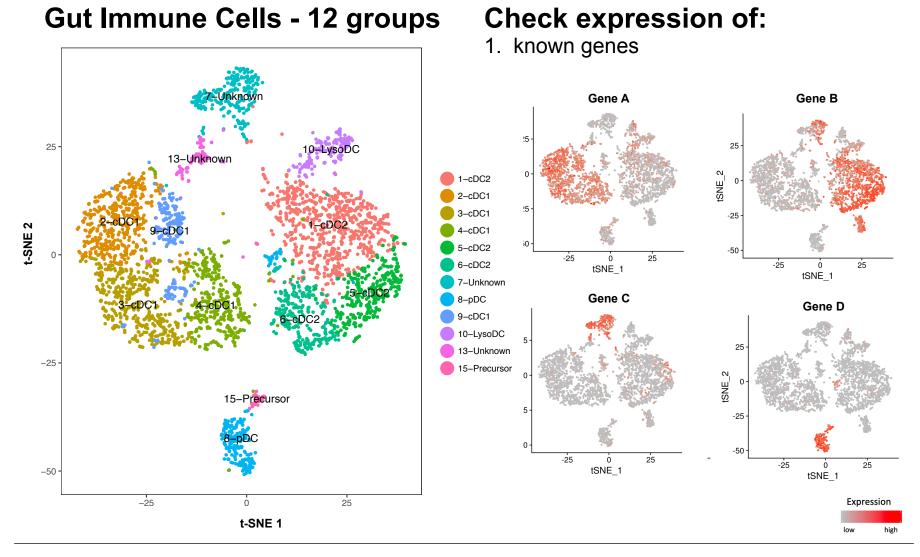


Check expression of:

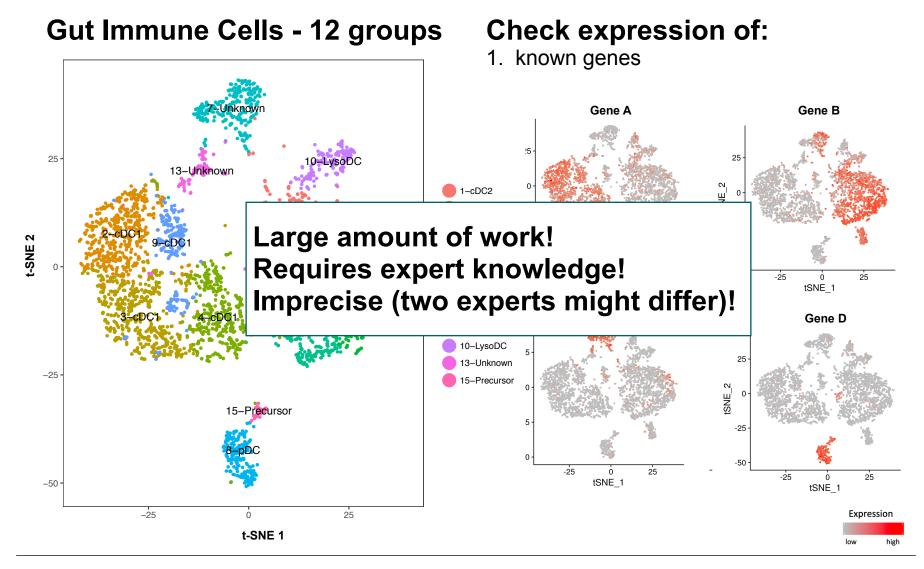
1. known genes



Cell Identity with an Expert

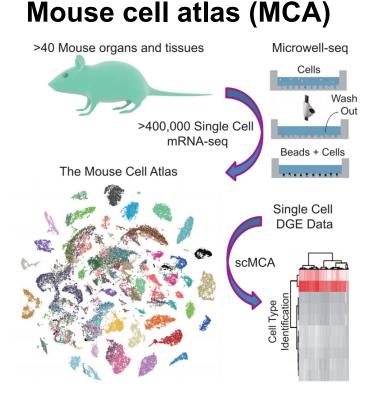


Cell Identity with an Expert



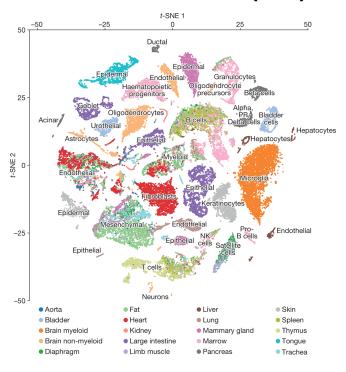
Automatic Cell Identification

Large consortia provide gene expression and annotation of cells - annotation is based on *cell ontology*



400.000 cells on 40 tissues

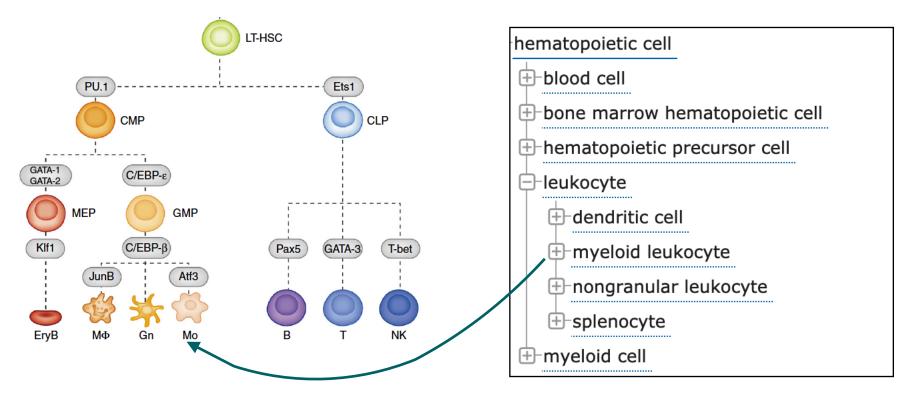
Tabula Muris (TM)



100.000 cells on 20 tissues

Cell Ontology

Controlled vocabulary for cell types in animals



Available as Json format at: https://github.com/obophenotype/cell-ontology

https://www.ebi.ac.uk/ols/ontologies/cl

Overall Design / Basic Approach

Use machine learning for cell type classifiers:

- elastic net, Neural Networks, Random Forests

For each organ from MCA build a classifier:

- i.e. Peripheral-Blood from MCA
- check/revise cell annotation (using cell ontology)
- use this data for classifier training/parameter selection with crossvalidation
- use area under PR curve for selection

Test data:

- Find respective organ in TM (i.e. bone marrow)
- Revise cell annotation
- Measure cell type accuracy (PR curve) of MCA model in TM data

Automatic Cell Identification

Mouse cell atlas & Tabula Muris

400.000 cells on 40 tissues

Use pre-annotated cells to build classifiers to annotate novel single cell data (diseases)

Methodological questions:

- 1. Which machine learning methods to use?
 - Neural networks, statistical methods,
- 2. Feature selection (vs. Blackbox)
 - Find reliable markers from classifiers?
- 3. Are classifiers robust on sparse data?
 - Evaluate performance when reducing number of reads

Automatic Cell Identification

Mouse cell atlas & Tabula Muris

400.000 cells on 40 tissues

Challenges:

- 1. Detect unknown/unseen cells?
 - Detect progenitor cells?
- 2. Build classifiers across tissues/ whole body?
- 3. Annotate human samples with mouse trained classifiers?

Challenges: Unseen cells

Test data has cell types, which are not included in your classifier.

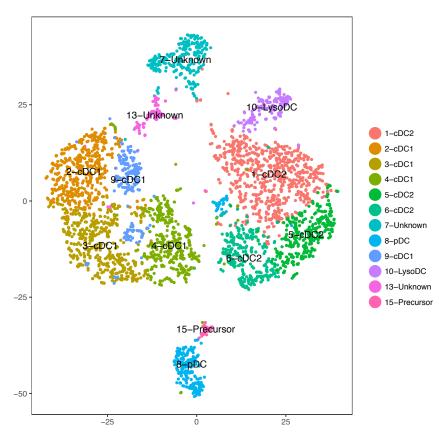
- You train data did not contained enough cells
- new cell types only found in a disease condition (test data).

- . . .

Build classifiers that recognise unknown cells

- classifiers have a confidence level
- Indicate that cells with low confidence are unknown

Example: gut immune cells



Challenges: Cross organs classification

blood vessels

Most cells are tissue specific

- parenchyma cells
 - aveoli in lungs
 - hepatocytes in liver

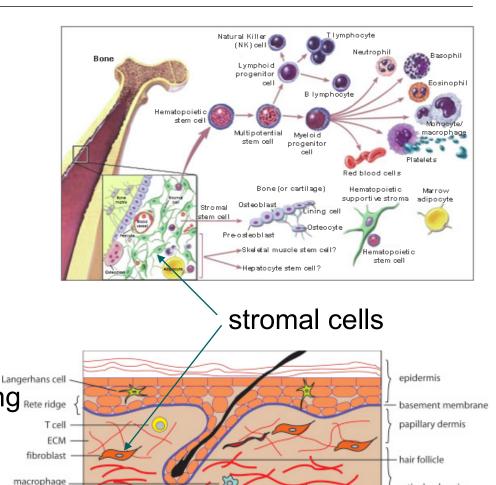
- . . .

Some cells are in several orgasms:

 stromal cells -> adipose cells, bone cells, fibroblast

- immune cells

- these cells might differ depending Reteridge of the tissue.



reticular dermis

dermal white adipose

Challenges: Cross organs classification

macrophage

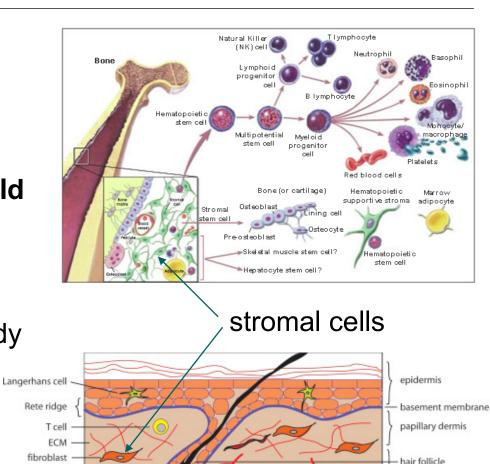
blood vessels

We known the origin/organ of a data.

What is the best strategy to build classifiers?

- a classifier per tissue?
- whole body classifiers?

- combination: per tissue for parenchyma cells and whole body for others?



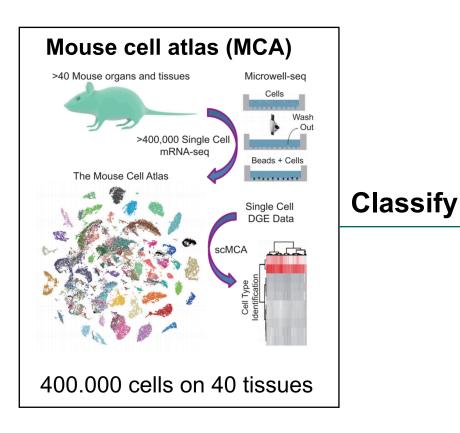
reticular dermis

dermal white adipose

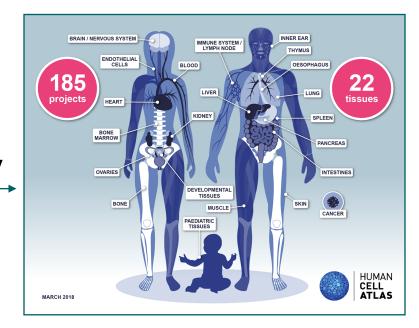
Challenges: Cross organism classification

Use mouse data to classify human samples

- gene names can be mapped but gene function might differ.



Human Cells



Still being built

Project Proposal

- Groups: 3-4 participants each
- Each group addresses a method problem and challenge

Method problem

Challenges

- 1. Which machine learning methods?
- 2. Feature selection?

- 1. Detect unknown cells
- 2. Cross tissues/whole body classifiers?
- 3. Are classifiers robust on sparse data? 3. Cro
- 3. Cross organism classifier?
 - Build classifiers and evaluate then on all MCA/TM data
 - additional tasks and data might be defined during the course.
 - Projects code should be deposited in gitlab (git.rwth-aachen.de)

Calendar

27.05.2019 to 8.07.2019 – Project Development

15.07.2019 – Project Presentation

Links

- Machine learning libraries:
 - python scikits https://scikit-learn.org/stable/
 - python & gpu https://keras.io/
 - R several individual packages
 - i.e. http://topepo.github.io/caret/index.html
 - seurat / low level single cell and cluster analysis
 - https://satijalab.org/seurat/
- Cell Ontology:
 - https://github.com/obophenotype/cell-ontology
- Single cell data repositories:
 - Tabua Muris (TM)
 https://figshare.com/articles/MCA_DGE_Data/5435866
 - Mouse cell atlas (MCA)
 https://figshare.com/articles/MCA DGE Data/5435866

Relevant data is already at the RWTH Cluster /hpcwork/nova0028/BioinfoLab/data

Thank you!

