
1 von 14

Introduction to Programming in R

Ivan G. Costa
Institute for Computational Genomics
Joint Research Centre for Computational Biomedicine
RWTH Aachen University, Germany

Programming, Language & Algorithms

What is an algorithm?
- finite set of well defined and unambiguous

commands to solve a task.

Programming language
- vocabulary and set of instructions to

command a computer

Algorithm Example - “Cake baking”

■ Prepare a cake pan by spraying with baking spray
or buttering and lightly flouring. Next, combine
flour, baking powder, baking soda, and salt in a
large bowl and set the mix aside. Add 3 eggs, one
at a time, and mix just until combined. Add flour
mixture and buttermilk, alternately, beginning and
ending with flour. Preheat oven to 200 C. Pour the
dough in a pan and bake it for 25-30 minutes until
edges turn loose from pan and toothpick inserted
into middle of cake comes out clean. Remove
from the oven and allow to cool for about 10
minutes.

Algorithm Analysis

Task - back a cake
Language - English

Algorithm Analysis

Task - back a cake
Language - English
Exact - ???
Well defined - ???

Algorithm Analysis

Task - back a cake
Language - English
Exact - ???
Well defined - ???

Language & Algorithms

Computer Language
- well defined commands.
- tests to decide the next steps (if-else command)
- tests for repeating commands until a condition

is satisfied (while or repeat)

My first algorithm- “Cake baking”
1. If baking spray is available then

prepare cake pan by spraying
else
 prepare can by buttering and lightly flouring.

2. While mixture is not creamy
1. Combine flour, baking powder, baking soda, and salt in a large bowl

3. Repeat 3 times
1. Add an egg
2. While mixture not homogeneous

1. Mix dough.
4. Pour the dough in a pan.
5. Turn oven on.
6. Wait until temperature is 200 C.
7. Put pan into offer
8. While “not” edges turn loose from pan or 30 minutes were pasted.

1. Wait 1 minute.
9. Remove from the oven
10. Wait for 10 minutes.

Algorithms

1.Exercise:
1. Describe how to change a tire using “if” and “else”

and while.

R Language

http://www.r-project.org/

• Script based Programming language
• Focus of statistical data analysis
• Open source
• Contributing packages

– Bioconductor (bioinformatics functions)
– ggplot (plotting functions)
– …

RStudio - Getting Started

• Install RStudio
https://www.rstudio.com

• Run RStudio

Computer Architecture

Memory
(RAM)

Central
Processing

Unity
Input/Output

Secondary
Storage

- Central Processing Unity (CPU)
- execute mathematical operations

- Memory (RAM)
- stores (limited) data for CPU (4-32 Gigabytes)
- fast access but not permanent

- Permanent Storage
- Slow access / large capacity (1.000 Gigabytes)
- Permanent storage of files

- Input/output
- monitor/keyboard/network card

Memory (RAM)

- A computer memory is like a large cabinet
- Each drawer can be used to keep information

- i.e. names, telephones
- Each drawer holds a particular type of information

- i.e. strings, numbers
- Computer knowns the location of a particular drawer

Variables

- Each drawer is called a
variable (and we can
give it a name)

Variables

- Each drawer has a type

- Each drawer is called a
variable (and we can
give it a name)

Variables

- Each drawer has a type

- Each drawer is called a
variable (and we can
give it a name)

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
-

- Each drawer is called a
variable (and we can
give it a name)

no_students
14

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
- character: course_name = “Bioinformatics in R”

- Each drawer is called a
variable (and we can
give it a name)

no_students course_name
“Bioinformatics in R”14

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
- character: course_name = “Bioinformatics in R”
- boolean: graduate_level = True

- Each drawer is called a
variable (and we can
give it a name)

no_students course_name
“Bioinformatics in R”14

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
- character: course_name = “Bioinformatics in R”
- boolean: graduate_level = True
- vectors: (combination of several variables of same

type): instructors = c(“Ivan”,”Joseph”,”Fabio”)
- Matrices: …

- Each drawer is called a
variable (and we can
give it a name)

no_students course_name
“Bioinformatics in R”14

RStudio & Memory

R console: local to provide commands!

Memory

Graphs (not now)

Variables and Data Types
Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …

x = 3; <enter>
x; <enter>

R console

“x = 3;” means store the number
“3” at a variable named “x”

Variables and Data Types
Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …
R console

“x = 3;” means store the number
“3” at a variable named “x”

Memory

Console

x = 3; <enter>
x; <enter>

R Console

>x = 3;
>x;
[1] 3
>class(x);
“numeric”

R console
“>” indicates
the console is
waiting for a
command

Output of the
command (no “>”)

We will omit the
<enter> from
now on.

Variables and Data Types
Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …

> x = 3
> x
[1] 3
> class(x)
“numeric”
> y ="Bioinformatics"
> y
"Bioinformatics"

R console

> class(y)
“character”
> z = TRUE
> z
TRUE
> class(z)
“logical”

Variables and Operations

> x = 3
> y = 4
> x + y
[1] 8
> x*y
[1] 12
> x/y
[1] 0.75

R console

We can apply arithmetic functions to variables

Variables and Operations

> z = x + y
> z
[1] 7

We can apply arithmetic functions to variables

> x = 3
> y = 4
> x + y
[1] 8
> x*y
[1] 12
> x/y
[1] 0.75

R console

Variables and Operations

We can apply logical functions to variables
 & (and) and | (or)

> x = 3
> y = 4
> x > y
[1] FALSE
> z = TRUE
> z & (x > y)
[1] FALSE
> z | (x > y)
[1] TRUE

R console

Complex Data Structures

• Vector – variable containing a array of items
of the same type

• Matrix – two dimensional vector with items
of the same type

• Data Frame – complex data structure for two
dimensional data where columns can be of
distinct type (as an excell sheet).

• …

Vector
• Creating, accessing and updating vector
> v = c(3.2, 4.1, 1.9)
> v
[1] 3.2 4.1 1.9
> v[2] # access 2nd position of vector
[1] 4.1
> v[3] = 10.4 #update 3rd position of vector
> v
3.2 4.1 10.4

> u = c(1,2,3)
> z = u + v #sum 2 vectors (if size is the same)
> z
[1] 4.2 6.1 13.4

Vector
• Operations, functions and access
> length(z) # function indicating size of vector
[1] 3
> 1:2 # vector with 1 and 2.
[1] 1 2
> z[1:2] #subsetting vector (1st and 2rd pos.)
[1] 4.2 6.1
> z > 6 #logical operator
[1] FALSE TRUE TRUE
> z[z > 6] # return all values greater than 6
[1] 6.1 13.4

Matrix
• Matrix – two dimensional vector / same type
> m = matrix(1:12, 4, 3) # 4 by 3 matrix
> dim(m) # size of matrix
4 3
> m[1,] # show first row of matrix
[1] 1 5 9
> m[3,1] #show element at 3rd row / 1st column
[3]
> m
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

Matrix
• RStudio also helps vizualisation of a matrix

click here!

Matrix

Matrix
• What happens if we have a large matrix?

450.000 lines by 1000 samples?

> m = matrix(1:12, 450000, 1000) # 4 by 3 matrix
> dim(m) # size of matrix
[1] 450000 1000
> m[,1] # show first column of matrix
[1] 1 2 3 4 5 6 …

Matrix
• What happens if we have a large matrix?

450.000 lines by 1000 samples?

• Large matrices use a lot of memory (1.7 GB)!
> remove(m) # remove m from memory

> m = matrix(1:12, 450000, 1000) # 4 by 3 matrix
> dim(m) # size of matrix
[1] 450000 1000
> m[,1] # show first column of matrix
[1] 1 2 3 4 5 6 …

Data Frames
• Data frames are hold a spreadsheet like table. The

observations are the rows and the covariates are the
columns. Columns share the same type.

• Data frames can be operated as matrices and be indexed
with two subscripts.

Data Frames
• Creation and manipulation

> data = data.frame(name = c("Ivan","Sonja","Carola","Anne"),
 department = c("Costa","Costa","Wagner","Wagner"),
 labhour = c(0, 8, 20, 20))
> data
 name department labhour
1 Ivan Costa 0
2 Sonja Costa 8
3 Carola Wagner 20
4 Anne Wagner 20
> data$department # access department column of frame
[1] Costa Costa Wagner Wagner
Levels: Costa Wagner
> data[,"department"] # access department column of frame
> data[,2] # second column of data frame

Data Frames
• Creation and manipulation

> data[1,] # first line of the data frame
name department labhour
1 Ivan Costa 0
> data$labhour > 8 # lab hours exceeding 8
[1] FALSE FALSE TRUE TRUE
> data[data$labhour > 8,]
data from members with more than 8 hours
 name department labhour
3 Carola Wagner 20
4 Anne Wagner 20
> data[data$department=="Costa",]
data from members of Costa dept.
 name department labhour
1 Ivan Costa 0
2 Sonja Costa 8

Factor
• A list of categorical nature

• i.e. gender (male,female), department (wagner, costa) ,
tumour type (…)

• Important for statistical tests and plots
> data$department
[1] Costa Costa Wagner Wagner
Levels: Costa Wagner
> levels(data$department)
[1] "Costa" "Wagner"
> levels(data$department)=c("AG Costa","AG Wagner")
> data$department
> summary(data$department)
 AG Costa AG Wagner
 2 2

List
• An ordered collection of variables of distinct types under

one variable (similar a data frame for a single observation).

example of a list with 3 components
> w = list(name="Fred", age=5.3, sex="male")
> w[[1]] # access the first variable of the list
[1] "Fred"
> w$name # access the variable "name" of the list
[1] "Fred"
> w[["age"]] # access the variable age of the list
[1] 5.3

Exercises

1. Create a data frame with all members of your lab (or
 Class colleagues). Include information as age, gender,

height (you can of course imagine this).

2. Create operations to list the name of all colleagues with
age higher than 30. Improve your method to list only
male members with age higher than 30.

1 von 14

Functions

Functions

• A section of a program that perform a specific task
– Takes values as input parameter and returns some new

value (or perform a operation)

• R and defines several types of functions
– math: log, exp, abs, sqrt,…
– array/matrix manipulation: length, dim, array, repmat,…
– Read/write files: read.table, write.table, …

• Can be created by user or defined in contributing
packages

Example of Functions
> log2(4)
[1] 2
> dim(data) # size of the data frame
[1] 4 3
> summary(data) # statistics of a data frame columns
 name department labhour
 Anne :1 Costa :2 Min. : 0
 Carola:1 Wagner:2 1st Qu.: 6
 Ivan :1 Median :14
 Sonja :1 Mean :12
 3rd Qu.:20
 Max. :20
> write.table(data,"mydata.txt")
write data in a .txt file
> getwd() # current working directory

Functions and help
> help.start() #opens a page with manual, tutorials and
help search
> help("write.table") #show options for write.table

Functions / Multiple Parameters
>help.start() #opens a page with manual, tutorials and
help search
>help("write.table") #show options for write.table

> write.table(data,"mydata.txt",quote=FALSE, sep="-")

data.frame to be saved
file name

use quotes between names
separators between values

Libraries
• In R the primary mechanism for distributing software

(functions) is via packages
• CRAN is the major repository for packages.

> install.packages("packagename") # install a new package

• Bioinformatic packages are available at Bioconductor
package.
> source("http://bioconductor.org/biocLite.R")

> biocLite("packagename")

• Before using functions of a library they need to be opened.
> library("packagename")

Own Function
• Programming languages allow to define own functions. This

is useful when you want to create a code describing a task
that need to be repeated (write a table as file, complex
arithmetic calculation).

myfunction <- function(arg1, arg2, ...){  
 statements  
 return(variable)  
}

Name of the function Input arguments

Return value

Own Function - Examples
myfunction <- function(arg1, arg2, ...){  
 statements  
 return(variable)  
}

• Example of function for summing up 3 numbers

> sum3 <- function(a,b,c){
 # creates a function and stores in memory
 result=a+b+c;
 return (result)
 }
> sum3(3,4,5)
[1] 12
> sum3(1,2,3)
[1] 6

Exercise 1

Creating regular numeric sequences is a common
task in statistical computing. You can use the seq
function to create sequences.

1. Read the help page for seq by entering help(seq).
2. Generate a decreasing sequence from 50 to 1,

then another sequence from 1 to 50.
3. Use seq to generate a sequence of the even

integers between one and ten.

Exercise 2

• Create an integer vector i that can be used
to subset v such that it will output the
elements of v in decreasing order. For the
general case, read the help pages for order
and sort.
> v = c(1.1, 2, 100, 50, 60)

Exercise 3

• Create a function that converts Celsius to
Fahrenheit degrees. Estimate the Fahrenheit
for 40 or 0 degrees (Celsius).

• This is the conversion formula.

1 von 14

Overview of RStudio

Intro to RStudio
• RStudtio is not R itself, but an integrated

development environment (IDE).

• It offers several
panels for different
purposes, such as
console, help
message, plots,
history, scripts…
etc.

https://www.rstudio.com/products/rstudio/?wvideo=520zbd3tij

1 von 14

Control Commands

Control Commands

•Algorithms are usually not sequential.
•Control commands
- test to decide the next steps

- if-else command
- Repeating commands until a condition is

satisfied
- for and while

if command

if (<logical test>){  
 statements # executed only if test is true 
}

> grade = 6
> if (grade >= 6){
 print("fail")
 }
[1] "fail"
> grade = 4
> if (grade >= 6){
 print("fail")
 }

• only executed if condition is true

Algorithm Analysis

Task - back a cake
Language - English
Exact - ???
Well defined - ???

if-else command

if (<logical test>){  
 statements # executed only if test is true 
}else{
 statements # executed only if test is true 
}

> grade = 4
> if (grade >= 6){
 print("fail")
 }else{
 print("pass")
 }
[1] "pass"

if-else function

ifelse(vector conditions , expression 1, expression 2)

> ifelse(data$labhour > 8,"Biologist","Bioinformatician")
 [1] "Bioinformatician" "Bioinformatician"
 [3] "Biologist" "Biologist"
> ifelse(data$labhour>8, c(1,2,3,4), c(5,6,7,8))
expressions can also be lists
[1] 5 6 3 4

• an if else function variant that evaluate a vector of
conditions

For command

For (value in sequence){  
 statements # executed for every value in sequence 
}

> name=c("Ivan","Sonja","Carola","Anne")
> for (n in name) {
 print(n)
 }
[1] "Ivan"
[1] "Sonja"
[1] "Carola"
[1] "Anne"

• Repeats statement while interacting in a list

For command examples
> range = 1:6 # command that creates a list from 1 to 6
> for (i in range) {
 print(i)
 }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
> value = 1
> for (i in range){
 value = value * i # computes the factorial of 6
 }
> value
[1] 720

For command examples

> data =data.frame(name=c("Ivan","Sonja","Carola","Anne"),
 department=c("Costa","Costa","Wagner","Wagner"),
 labhour=c(0,8,20,20))
> row.names(data)=data$name # makes name the identifier for
each row.
> data["Ivan",]
> for (n in data$name){
 if (data[n,]$labhour > 8){
 print(data[n,]);
 }
 }

> data[data$labhour > 8,]

For command examples

• What about previous example?

> data =data.frame(name=c("Ivan","Sonja","Carola","Anne"),
 department=c("Costa","Costa","Wagner","Wagner"),
 labhour=c(0,8,20,20))
> row.names(data)=data$name # makes name the identifier for
each row.
> data["Ivan",]
> for (n in data$name){
 if (data[n,]$labhour > 8){
 print(data[n,]);
 }
 }

While command

while (<logical test>){  
 statements # executed while test is true 
}

> i = 1
> while (i < 6) {
 print(i)
 i = i+1
 }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

• Repeats statement while condition is true

Exercises

1. Create a function in R to provide the factorial value of a
number (using loops).

factorial(x) = factorial(x-1)*x

2. Write a loop that counts 1 to 10 and this is repeated 3
times.

3. Write a loop that writes all numbers from 1 to 35 but skips
the numbers 3,9,13,19,23,29. Tips: you can use the
operator %in% to check if a value is in a list and you need
a loop and a if for this problem.

Want more?

- Further tutorials at ...
- https://www.datamentor.io/r-programming/#tutorial

• More exercises at …
http://www.bioconductor.org/help/course-materials/2010/

BioC2010/First_Steps_With_R_SOLUTIONS.pdf

Inst. for Computational Genomics
• Ivan G. Costa
•Joseph Kuo

