Bioinformatics Lab

Ivan Gesteira Costa & Zhijian Li Institute for Computational Genomics

Objectives

- Hands on introduction to bioinformatics programing
- Review basic biological/computational aspects
 - 1. basics of molecular biology
 - 2. basics of sequencing
 - 3. basics bioinformatics problems
 - short sequences read alignment
 - differential peak calling
 - motif detection
 - footprint detection

Objectives

- Introduction to Bioinformatics Frameworks/Tools
 - 1. biological sequence data formats/handling
 - Biopython, Pysam
 - 2. bioinformatics tools
 - BWA (aligner), MACS/ODIN(Peak caller), RGT/ bedtools (interval algebra), regulatory genomics toolbox (RGT)

Grading/Online material

Evaluation:

- 20% prototypes
- 60% final project
- 20% presentation

Extra-work (anyone from media informatics?):

research report

References/Courses Online

http://costalab.org/teaching/bioinformatics-software-lab-2018/

Introduction to Molecular Biology

- How is genetic information inherited?
- How the genetic information influence cellular processes?
- How genes work together to promote particular molecular functions?

Genetic Information - DNA

DNA (Deoxyribonucleic)

- chain of nucleic acids
- 4 bases: A;C;G;T
- forms DNA duplexes with paring A = T e C = G

Central Dogma - Transcription

Transcription

• DNA to RNA

RNA (ribonucleic acid)

- single stranded
- 4 bases: A;C;G;U
- unstable
- transport of information from nucleus to cytoplasm

Central Dogma - Transcription

Figure 1-5 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Transcription - copy of DNA information to RNA (T to U)

Central Dogma - Translation

Translation

- RNA to Protein
- performed by the ribosome
- follows the genetic code

Proteins

- single stranded chain
- 20 amino acids
- assumes 3D structure
- main functional entities in the cell

Genetic Code - Translation

Figure 6-50 Molecular Biology of the Cell 5/e (© Garland Science 2008)

triples of RNA bases encodes a amino acid

Central Dogma

- Dogma: information flux
 DNA -> mRNA -> Proteins
- Gene: DNA segment coding a protein.
- Transcript: RNA segment associated to a gene.
- Genes is associated to one proteins and one function*

* Genes might be associated to many proteins

Control of Gene Expression

Figure 6-19 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Gene Expression

Gene Regulation / Motif Search

Regulatory Control – Protein-DNA interaction

Source: Alberts, B. et al. (2008) Garland Science, 5th ed.

Motif Search – Computational Approach

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

MuMHC I	AGGAACT
HuMxA	GGGAACA
HuIFN-β	AGAAAGT
$Mu\beta_2m$	AGGAACT
HuGBP	GAGAAGT
Histone H4	AGGAAGC
HuIFN-α	AGGAACC
	MuMHC I HuMxA HuIFN-β Muβ ₂ m HuGBP Histone H4 HuIFN-α

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

PU.1 Position

Weight Matrix (PWM)

AGGAACT
GGGAACA
AGAAAGT
AGGAACT
GAGAAGT
AGGAAGC
AGGAACC
5117731
000002
2660040
000004

Model for DNA-protein binding

PU.1 binding sites

Kanno, Y. et al. (2005) Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex.

> PU.1 Position Weight Matrix (PWM)

> > PU.1 Logo

PU.1 PWM

Genome TATCTTTGGAAGTGAAACTACTATCCTGAAACTCGAA

PU.1 PWM[#]

PU.1 PWM[®]

Example: Binding sites in ID2

Motif search for binding sites with 536 PWMs (Jaspar & Uniprobe) and FDR=0,01

Epigenetics

Cellular Complexity

Figure 7-1 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Two cells of a organism have exactly* the same DNA

How does this differences arise? How is cell fate remembered?

* with exception of somatic mutations and rearrangements of immunological loci

Epigenetics & Histones

Modification in histone tails - change strength of DNA binding

- recruit transcription factors

Chromatin Structure and Regulation

Adapted from Lodish, B. et al. (2004) 5th ed.

Epigenetics

Protein-DNA interactions with Next Generation Sequencing

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Read the bases of a particular DNA/RNA sequence

Applications:

- sequence DNA of known and unknown organism
- detect variants on patients
- sequence the RNA of a cell
- detect location of proteins interacting with DNA
 Problem:
- only short DNA sequences (<1.000 bs) can be read
 Solution: break DNA in several small pieces and
 bioinformatics

Next Generation Sequencing

- NGS take advantage of parallelization
 - reads millions/billions of reads for a time
 - shorter reads (50-100 bps)
 - higher error rates (0.1-1%)
- commercial products:
 - 454
 - **SOLiD**
 - Solexa (Illumina)

Illumina Flow Cell - NGS Sequencing

1- fragment sample DNA, insert adapters, attach to flow cell

2- use (bridge) PCR to copy fragments (close to origin)

3- clusters of single stranded DNA (200m clusters with 2k DNA strands

See video http://www.wellcome.ac.uk/Education-resources/Education-and-learning/Resources/Animation/WTX056051.htm

Illumina Flow Cell - NGS Sequencing

- Iterative evaluation process:
 - 1. add RT-bases, polymerases integrate them
 - 2. wash away all not integrated elements
 - 3. take picture of flow cell to determine current base by dye
 - 4. derive reads from pictures

Sequencing Results

 $P = 10^{(-Q/10)}$

Next Generation Sequencing

Improvements in the rate of DNA sequencing over the past 30 years

Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719-724 (2009).

Sequencing Costs

Sequence Alignment

Sequence Alignment

NGS

- reads from DNA fragments
- position in genome is unknown
- solution: alignment

DNA Sequencing

- de-novo assembly
 - construct unknown reference sequence from scratch
- resequencing / mapping
 - reference sequence given (applies to human- and mousestudies)
 - build sequence that is similar but not necessarily identical to reference sequence

Alignment Problem

- a large reference sequence is given (genome)
 - up to billions of base pairs
- short reads (<200bps)
- find most probable position of the read in the genome (by inexact string matching)

- (Unknown) divergent of sample and reference genome
- Repeats in the genome (larger than read size)
- Recombinations
- Poor genome reference quality
- Sequencing/read errors

Alignment/Mapping is a typical inexact string match problem

Algorithmic Solutions: ?

Alignment/Mapping is a typical inexact string match problem

Algorithmic Solutions:

• Smith & Waterman - dynamic programming (quadratic time/memory)

Alignment/Mapping is a typical inexact string match problem

Algorithmic Solutions:

- Smith & Waterman dynamic programming (quadratic time/memory)
- Blast k-mer search for seeding followed by
 dynamic programming
 - large memory requirement
 - local alignment

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?
- **1. Use a data structure to represent reference**
 - k-mer hash table (>40GB)
 - suffix trees (> 4GB)

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?
- **1. Use a data structure to represent reference**
 - k-mer hash table (>40GB)
 - suffix trees (> 4GB)
- 2. Find candidate (k-mer) hits on genome (>100)

- reference sequence is large and fixed
- query sequence (reads) are short and many
 Solution: ?
- **1. Use a data structure to represent reference**
 - k-mer hash table (>40GB)
 - suffix trees (> 4GB)
- 2. Find candidate (k-mer) hits on genome (>100)
- 3. Improve alignment with Smith-Waterman Methods work on linear time (query sequence)

Hash based algorithm

Computational Epigenomics

Computational Epigenomics - Problems

1. Motif Search (already seen)

- search transcription factor binding sites in genomic sequences

2. Peak Calling

- find regions with high number of ChIP-Seq signals

3. Digital Footprinting

- find genomic regions with depletion of DNase-seq signals

DNA - Protein interactions with NGS

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Institute for Computational Genomics 01011011010 1010010010

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2 4

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

Counts

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

- which window size to use?
- distinct proteins have distinct peak sizes
- proper quantification of read counts require several further steps: fragment size estimation, CG bias correction, mappability, ...

We will see examples in the next See lectures

http://www.regulatory-genomics.org/rgi/tutorial/implementing-your-own-peak-caller/

Peak Calling - Example for Transcription Factors

Example of analysis of ChIP-Seq for transcription factors (small peaks)

Histone code	
H3K79me2 - Transcribed	
H3K27ac - Active	
H3K27me3 - Repressed	

Peak Calling - Example for Transcription Factors

Example of analysis of ChIP-Seq for transcription factors (small peaks)

Peak Calling - Example for Transcription Factors

Example of analysis of ChIP-Seq for transcription factors (small peaks)

Peak Calling - Example for Histones

Example of analysis of ChIP-Seq for histones (medium to broad peaks)

DNA - Protein interactions with DNase-Seq

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

DNAse cleavage

Open chromatin with ATAC-seq

Li et. al, unpublished

Open chromatin with ATAC-seq

Li et. al, unpublished

Computational Footprint Methods

Computational Footprint Methods

Site-centric: Classify motif-predicted binding sites as "bound" or "unbound".

* only applicable if "true positives" TF are known

Institute for Computational Genomics 01011011010 1010010010

16.04.2018 - Introduction to Biology & Bioinformatics 30.04.2018 - Example of NGS pipeline / data formats 07.05.2018 - Intro to RGT / Problem definition ... - Project development 16.07.2015 - Final Presentation

Thank you!

