Practical Example: Analysis of Open Chromatin Data

Ivan Gesteira Costa & Zhijian Li Institute for Computational Genomics

Zhijian Li

zhijian.li@rwth-aachen.de

MTZ, Room 3.02

Analysis pipeline

- Download sequencing data
 - SRA toolkit, FASTA, FASTQ and SRA file
- Sequence alignment
 - Bowtie2, samtools, SAM and BAM file
- Peak calling
 - MACS
- Footprinting and motif analysis
 - RGT, bed file

1. Download Data

SRA tools

- A collection of tools and libraries for using data in NCBI Sequence Read Archives
- More information:
 - https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi? view=toolkit_doc&f=std

FASTA File

- Store DNA sequences in a text-based file
- Mainly used to store large genomic sequences
- Header (lines that start with '>') + DNA sequence
- DNA alphabeta: A, C, G, T, N

>SEQ_ID GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

FASTQ File

- Also text-based file
- Mainly used to store short DNA sequences
- Normally use four lines per sequence
 - Line 1 begins with '@' and is followed by a sequence ID
 - Line 2 is the raw sequence letter
 - Line 3 begins with a '+' character and is followed by the same sequence ID
 - Line 4 encodes the sequencing quality values

FASTQ File: example

SRA File

• A compressed version of FASTQ file

Download data

- Download and unpack our reference sequence
 - wget http://hgdownload.soe.ucsc.edu/goldenPath/ mm10/chromosomes/chr19.fa.gz
 - gunzip chr19.fa.gz
- Download sequencing reads
 - prefetch SRR1533863 SRR1533847
- Use SRA toolkit to convert SRA to FASTQ
 - fastq-dump ~/ncbi/public/sra/SRR1533847.sra
 - fastq-dump ~/ncbi/public/sra/SRR1533863.sra

Practice for data download

5 minutes

2. Short DNA Sequence Alignment

Sequence Alignment

- Input data
 - A large reference sequence (chr19.fa)
 - Millions of short DNA reads (SRR1533863.fastq, SRR1533847.fastq)
- Sequence alignment:
 - Find most probable position for each read in the genome (allow insertion and deletion)

Bowtie2

- Align reads to the genome:
 - Extract 'seed' substrings from the read
 - Align the substrings to the reference
 - Calculate the position information
 - Extend the seeds to full alignments using dynamic programming
- More information:
 - Paper: https://www.nature.com/articles/nmeth.1923
 - Website: <u>http://bowtie-bio.sourceforge.net/bowtie2</u>

Samtools

- Provides various utilities for manipulating alignments in SAM format
- More information:
 - Paper: <u>https://www.ncbi.nlm.nih.gov/pubmed/</u> <u>19505943</u>
 - Website: <u>http://www.htslib.org/doc/samtools.html</u>

Perform alignment

- Build genome's index:
 - bowtie2-build chr19.fa chr19
- Align reads to the genome:
 - bowtie2 -x ./chr19 U MPP.fastq -S MPP.sam
 - bowtie2 -x ./chr19 U B.fastq -S B.sam

Perform alignment

- Build genome's index:
 - bowtie2-build chr19.fa chr19
- Align reads to the genome:
 - bowtie2 -x ./chr19 U MPP.fastq -S MPP.sam
 - bowtie2 -x ./chr19 U B.fastq -S B.sam

Use -p to speed up your alignment!

SAM file

- Store DNA sequences in a text-based file
- Mainly used to store aligned sequences
- Consists of a header and an alignment section

SAM Header

- Begins with character '@' followed with some tags
 - @HD Header line
 - @SQ Reference genome information.
 - @RG Group information
 - @PG Program (software) information.
 - @CO Commentary line.

SAM Alignment

Includes mandatory and optional fields

Mandatory

Optional

- More information:
 - <u>https://samtools.github.io/hts-specs/SAMv1.pdf</u>

BAM file

- Binary Alignment/Map format compressed version of SAM
- Efficient random access
- BAI index files

Manipulating alignments

- Convert SAM to BAM
 - samtools view -bS MPP.sam > MPP.bam
 - samtools view -bS B.sam > B.bam
- Sort BAM
 - samtools sort MPP.bam MPP.sorted
 - samtools sort B.bam B.sorted
- Remove low map quality reads
 - samtools view -bq 30 MPP.sorted.bam > MPP.final.bam
 - samtools view -bq 30 B.sorted.bam > B.final.bam

Manipulating alignments

- You can download the results here:
 - http://134.130.18.8/open_data/bioinfolab_2018/ Practices/MPP.final.bam
 - http://134.130.18.8/open_data/bioinfolab_2018/ Practices/B.final.bam

Institute for

moutational Genomic

- Create index files
 - samtools index MPP.final.bam
 - samtools index B.final.bam

IGV visualization

	chr:	ch19												
			qА			qB		qCl		qC2	qC3	qD1	qD2	qD3
	-							——————————————————————————————————————						
		30,6	573,580 bp		30,673,590 bp		30,673,600 bp	1	30,673,610 bp		30,673,620 bp	30,673,630 bp	1	30,673,640 bp
		1	1	1			1	1	1	I			1	
Sequence 👄	С	C C C A G G	GTATG	TGT	сстстаад	AGO	<mark>дасса</mark>	CAGTA	гссто	ссттт	GGATGC	C A G G T A A T G (сттт	T T G G 🔺
			GTATG	TGTO	сстстаад	AG	GACCA	CAGTA	гссто	ссттт	GGATGC	C A G G T A A T G (стт	
B.final.bam														
Refseq genes	-				• • • • • •	· · · ·		• • • • • •		• • • •			• • • • •	
	[0 - 1	10.00]						Prkgl						
B.final.barn Coverage														
														-
														-
														•

IGV visualization

Practice for short DNA sequence alignment

10 minutes

3. Peak Calling

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Counts: 2 4

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

Aligned Reads

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

Counts

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Example of a simple peak caller :

- use a fix window to scan through the genome and obtain a distribution of counts per bin
- define a statistical test to evaluate if the number of reads in higher than expected by change

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

Problems: - which window size to use? distinct proteins have distinct peak sizes proper quantification of read counts require several further steps: fragment size estimation, CG bias correction, mappability, ... if the number of reads in higher S(s)thresh than expected by change

Aligned Reads

Counts

See for an example of a code for a peak caller

http://www.regulatory-genomics.org/rgt/tutorial/implementing-your-own-peak-caller/

- Model-based Analysis of ChIP-seq
- Two important steps
 - models the shift size of ChIP-seq reads and uses it to improve the spatial resolution of inferred TF binding sites
 - estimates a dynamic background reads distribution to effectively capture local biases in the genome, allowing for more robust identifications

Fragments are added

aligned to reference genome

- Only 5' end of fragments are sequenced
- Tags from both + and strand aligned to reference genome

Institute for Computational Genomics 010110110101 10100100101

- Model the reads using a Poisson distribution
- Advantage: only one parameter (λ) which models mean and variance
- Peaks are defined given a p-value on the Poisson model

Perform peak calling with MACS

mkdir PeaksB macs2 callpeak -t B.final.bam -n B --outdir PeaksB -g mm

4. Footprint & Motif Analysis

Problem definition: Find genomic regions (of small size) with depletion in DNase-seq signals

BED file: Storing genomic regions

- Text-based tab-delimited file to store genomic signals.
- Fields:
 - chrom: The name of chromosome
 - chromStart: The starting position of the coordinate (start = 0)
 - chromEnd: The ending position of the coordinate
 - name: Label of the coordinate.
 - score: A score between 0 and 1000.
 - Strand: either '+' or '-'
- Example:

chr1	714057	714099	chr1:714057-714099	424	+
chr1	714102	714120	chr1:714102-714120	463	-
chr1	714121	714135	chr1:714121-714135	473	+
chr1	714137	714148	chr1:714137-714148	429	-
chr1	714220	714228	chr1:714220-714228	419	+

Detect Footprints with HINT

- Detect footprints using HINT:
 - rgt-hint footprinting --atac-seq --organism mm10 -output-prefix=MPP MPP.final.bam ./PeaksMPP/ MPP_peaks.narrowPeak
 - rgt-hint footprinting --atac-seq --organism mm10 -output-prefix=B B.final.bam ./PeaksB/
 - B_peaks.narrowPeak

- Motif matching using RGT:
 - rgt-motifanalysis matching --organism mm10 --randproportion 10 --input-files B.bed MPP.bed

Visualization

Motif enrichment

Is CTCF more likely to bind in those regions than in background regions?

Motif enrichment

Motif enrichment

• Performs Fisher's exact test in order to verify if a set of genomic regions are enriched for particular transcription factors.

Perform motif enrichment

 rgt-motifanalysis enrichment --organism mm10 ./match/ random_regions.bed B.bed MPP.bed

Perform motif enrichment

Regulatory Genomics Toolbox - Motif Enrichment Analysis B MPP Results for **B** region **Site Test*** using all input regions * This test considered all input regions against background regions CORRECTED BACKGROUND FACTOR MOTIF **P-VALUE** FREQUENCY GO В С D Α FREQUENCY P-VALUE 2.0stig 1.0 KLF12 HUMAN.H11MO.0.C 4.8159e-40 0.14% 3.7131e-37 72 4214 65 45309 1.68% <u>View</u> 0.0-10 3 SP1 HUMAN.H11MO.1.A 9.7376e-35 3.7538e-32 45334 1.31% 0.09% 56 4230 40 <u>View</u> 2.0stiq 1.0 MAZ HUMAN.H11MO.1.A 1.6060e-31 0.33% 4.1274e-29 85 4201 151 45223 1.98% <u>View</u> 0.0-5' 10 3 Logo 3.6.0 2.0 oits SP2_HUMAN.H11MO.1.B 4.0513e-29 7.6943e-27 70 4216 107 45267 1.63% 0.24% View 10 81 KLF9 HUMAN.H11MO.0.C 4.9898e-29 7.6943e-27 52 4234 48 45326 1.21% 0.11% <u>View</u> stiq 1. E2F4_HUMAN.H11MO.0.A 7.0187e-25 9.0190e-23 33 4253 14 45360 0.77% 0.03% <u>View</u> 10 3' KLF1_HUMAN.H11MO.0.A 6.9452e-24 7.6497e-22 56 4230 84 45290 1.31% 0.19% <u>View</u> 2.0 -

The data is available on: http://134.130.18.8/open_data/bioinfolab_2018/Practice.tar.gz

Thank you!

