
Ivan G. Costa

IZKF Computational Biology Research Group
University Hospital Aachen
RWTH Aachen

(Brief) Introduction to R

R Language

• Script based Programming
language

• Focus of statistical data analysis
• Open source
• Contributing packages

– Bioconductor (bioinformatics tools)
– ggplot (plotting functions)
– …

http://www.r-project.org/

Getting Started

• Install R
http://cran.r-project.org/

• Run R

R console in windows

Variables and Data Types

Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …

>x = 3;
>x;
[1] 3
>class(z);
“numeric”
>y = “Bioinformatics”
>y;
“Bioinformatics”

R console
>class(y);
“character”
>z= TRUE;
>z;
TRUE
>class(z);
“logical”

Operations

We can apply arithmetic/logical functions to variables
+ (addition), - (subtraction) , / (division), * (multiplication)

> x = 3;
> y = 4;
> x+y;
[1] 8
> x*y;
[1] 12
> x/y
[1] 1

R console
> x>y;
[1] FALSE
> z=TRUE;
> z & (x>y) # logical and
[1] FALSE
> Z | (x>y) # logical or
[1] TRUE

Complex Data Structures

• Vector – variable containing a array of items
of the same type

• Matrix – two dimensional vector with items
of the same type

• Data Frame – complex data structure for
two dimensional data where columns can be
of distinct type (as an excell sheet).

• …

Vector

• Creating, accessing and updating vector
> v=c(3.2,4.1,1.9)
> v
[1] 3.2 4.1 1.9
> v[2] # access 2nd position of vector
[1] 4.1
> v[3] = 10.4 #update 3rd position of vector
> v
3.2 4.1 10.4
> u=c(1,2,3)
> u+v
>v
[1] 4.2 6.1 13.4

Vector
• Operations, functions and access

> z = u+v # arithmetic operation in vector
> z
[1] 4.2 6.1 13.4
> length(z) # function indicating size of vector
[1] 3
> z[c(1,3)] #subsetting vector (1st and 3rd pos.)
[1] 4.2 13.4
> z>6 #logical operator
[1] FALSE TRUE TRUE
>z[z>6] # return all values greater than 6
[1] 6.1 13.4

Matrix
• Matrix – two dimensional vector / same type

> m = matrix(1:12, 4, 3) # 4 by 3 matrix
>dim(m) # size of matrix
4 3
>m[1,] # show first row of matrix
[1] 1 5 9
>m[3,1] #show element at 3rd row / 1st collumn
[1]
>m
[,1] [,2] [,3]

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

Matrix
• Matrix – two dimensional vector / same type

> m = matrix(1:12, 4, 3) # 4 by 3 matrix
>dim(m) # size of matrix
4 3
>m[1,] # show first row of matrix
[1] 1 5 9
>m[3,1] #show element at 3rd row / 1st collumn
[1]
>m
[,1] [,2] [,3]

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

Data Frames
• Data frames are hold a spreadsheet like table. The

observations are the rows and the covariates are the
columns. Columns share the same type.

• Data frames can be operated as matrices and be indexed
with two subscripts.

• Creation and manipulation

Data Frames

>data =data.frame(name=c("Ivan","Sonja","Carola","Anne"),
+ department=c("Costa","Costa","Wagner","Wagner"),
+ labhour=c(0,8,20,20))
> data

name department labhour
1 Ivan Costa 0
2 Sonja Costa 8
3 Carola Wagner 20
4 Anne Wagner 20
> data$department
[1] Costa Costa Wagner Wagner
Levels: Costa Wagner

• Creation and manipulation

Data Frames

>data[1,]
name department labhour

1 Ivan Costa 0
> data$labhour >8 # lab hours exceeding 8
[1] FALSE FALSE TRUE TRUE
> data[data$labhour >8,] # data from members with more than 8 hours

name department labhour
3 Carola Wagner 20
4 Anne Wagner 20
> data[data$department=="Costa",] # data from members of Costa dept.
name department labhour

1 Ivan Costa 0
2 Sonja Costa 8

• A section of a program that perform a specific task
– Takes values as input parameter and returns some new

value (or perform a operation)
• R and defines several types of functions

– math: log, exp, abs, sqrt,…
– array/matrix manipulation: length, dim, array, repmat,…
– Read/write files: read.table, write.table, …

• Can be created by user (not seen here) or defined
in contributing packages

Functions

Example of Functions

>log2(4)
[1] 2
>dim(data) # size of the data frame
[1] 4 3
>summary(data) # statistics of a data frame columns
name department labhour
Anne :1 Costa :2 Min. : 0
Carola:1 Wagner:2 1st Qu.: 6
Ivan :1 Median :14
Sonja :1 Mean :12

3rd Qu.:20
Max. :20

>write.data(“mydata.txt”,data) # write data in a .txt file

General Commands & Links

>quit() # end R session
>ls() #show all variables currently defined
[1] “x”, “y”, “data”
>help(matrix) #shows help function for the function passed as param.
>help.start() #opens a page with manual, tutorials and help search

Packages

• In R the primary mechanism for distributing software is via
packages

• CRAN is the major repository for packages.
• You should use install.packages or update.packages to

install and update packages.
>install.packages("packagename”) # install a new package

• In addition, on Windows and other GUIs, there are menu
items that facilitate package downloading and updating.

• Bioconductor packages are installed with biocLite
command.
>source("http://bioconductor.org/biocLite.R")
>biocLite(“packagename”)

Exercise 1

Create a vector representing the radius of
three circles with lengths 5, 10, and 20. Use
* and the built-in constant pi to compute
the areas of t.

Exercise 1 - Solution

> circles <- c(5, 10, 20)
> # areas are:
> pi * circles * circles
[1] 78.53982 314.15927 1256.63706
> # you could also use ^
> pi * circles^2
[1] 78.53982 314.15927 1256.63706
> # reduce radii by 2.1
> pi * (circles - 2.1)^2
[1] 26.42079 196.06680 1006.59770

Exercise 2

Creating regular numeric sequences is a common
task in statistical computing. You can use the seq
function to create sequences.

1. Read the help page for seq by entering help(seq).
2. Generate a decreasing sequence from 50 to 1,

then another sequence from 1 to 50.
3. Use seq to generate a sequence of the even

integers between one and ten.

Exercise 2 - Solution

> seq(50, 1) #sequences 50 to 1
[1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
[19] 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15
[37] 14 13 12 11 10 9 8 7 6 5 4 3 2 1
> seq(1, 50) # sequences 1 to 50
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50
> seq(2, 10, 2) #even integers
[1] 2 4 6 8 10

Exercise 3

• Create an integer vector i that can be used
to subset v such that it will output the
elements of v in decreasing order. For the
general case, read the help pages for order
and sort.
> v = c(1.1, 2, 100, 50, 60)

Exercise 3 - Solution

• http://www.bioconductor.org/help/course-
materials/2010/BioC2010/First_Steps_With_
R_SOLUTIONS.pdf

> i = c(3, 5, 4, 2, 1) #create a vector with right order
> i = order(v, decreasing = TRUE) # or use sort function to get order
> i;
[1] 3 5 4 2 1
> v[i] # reorder elements from v
[1] 100.0 60.0 50.0 2.0 1.1

• More exercises at …
http://www.bioconductor.org/help/course-

materials/2010/BioC2010/First_Steps_With_R_SOLUTIONS.
pdf

