Bioinformatics Practices

2 May 2016

Agenda Today

- Recap of various file format in bioinformatics
- Introduction of RGT (Regulatory Genomics Toolbox)
 - Website
 - Core modules
 - Practice
- Case study
 - 1. Peakcalling (Practice)
 - 2. Visualization by lineplot (Practice)
 - 3. Motif analysis (Practice)

Recap of file formats

FASTA, FASTQ	Sequences
	Alignment
SAM, BAM	Reads
	Peakcalling
BED, BIGBED	Regions
WIG, BIGWIG	Signals

>AB000263 |acc=AB000263|Homo sapiens mRNA ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCCCGGGGCCACGGCCACCGCTGCCCTGCC CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG TTTAATTACAGACCTGAA

@SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50
TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT
+SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50
hhhhhhhhhhhhhhhhhhhhhhfffffe`ee[`X]b[d[ed`[Y[^Y

chr7	127471196	127472363	Pos1	0	+
chr7	127472363	127473530	Pos2	0	+
chr7	127473530	127474697	Pos3	0	+
chr7	127474697	127475864	Pos4	0	+
chr7	127475864	127477031	Neg1	0	-
chr7	127477031	127478198	Neg2	0	-

variableStep chrom=chr2 span=5 300701 12.5 310500 15.0

Introduction of RGT

Bioinformatic Lab 2016

Background: Protein-DNA interaction

TF-TFBS smaller regions Histone modification

larger regions

ChIP-seq

chromatin immunoprecipitation (*ChIP*) with massively parallel DNA sequencing (*seq*)

To identify the genome-wide locations of DNA binding proteins

Background: ChIP-seq data analysis Acquired short sequences reads Alignment (reads mapping) BAM signal Peak calling BED genomic region genomic region set

Background

- Massive amounts of epigenetic data are produced by NGS techniques, such as ChIP-seq.
- The analysis of such data is mostly based on the manipulation of two common data structures:
 - 1. **genomic signals**, which indicate the abundance of a ChIP-seq reads on genome; and
 - 2. **genomic regions**, which represent candidate regions with the binding of a protein/histone with particular modifications to the DNA.

Core classes

- GenomicRegion
- GenomicRegionSet
- AnnotationSet
- GeneSet
- CoverageSet

GenomicRegion

Let's do it

Creating a Simple Peak Caller

Creating a simple peak caller

- Using RGT functions in Python.
- Same basic idea of previous lectures.

Creating a simple peak caller

- Using RGT functions in Python.
- Same basic idea of previous lectures.

Creating a simple peak caller

- Using RGT functions in Python.
- Same basic idea of previous lectures.

Our Peak Calling Pipeline

- 1. Normalize for CG content.
- 2. Normalize with input-DNA.
- 3. Use a binomial distribution to model read coverage.
- 4. Iterate over genomic bins performing binomial test.
- 5. Store the bins that pass the test.

Normalize for CG content

- Coverage (signal intensity) varies given the frequency of C's and G's.

GC-content for PU.1 data set

Normalize with Input DNA

- Input DNA ChIP-seq: A ChIP-seq experiment performed without the ChIP step.
- Many steps of the biological and computational process bias the signal's intensity within certain regions.

Normalize with Input DNA

- Input DNA ChIP-seq: A ChIP-seq experiment performed without the ChIP step.
- Many steps of the biological and computational process bias the signal's intensity within certain regions.

Model Distribution of Reads with Binomial

- Working assumption: ChIP-seq reads falling into a bin follow a Binomial distribution with parameters **s** and **p**.
- **s** = number of events = number of reads in the ChIP-seq library.
- **p** = probability of event = chance that a read falls into a bin.

Implementing peak caller

Code in practices/2_peak_caller/peak_caller.py

- Execution:

cd practices/2_peak_caller/
python peak_caller.py

- Understanding the code

RGT-viz

Joseph Kuo

Objectives

1. Association between two genomic region sets

- *Q: Do they have overlaps? These overlaps are due to chance or not?*
- 2. Association between regions to signal

Objectives

1. Association between two genomic region sets

Evaluate association between regions

With overlap

1. Count the number of overlapped regions:

2. Measure the amount of overlapped regions:

The unit here is bps

Tests for regions v.s. regions

	Measure object	Reference size	Query size
Projection test	number of overlaps	large	any
Intersection test	number of overlaps	any	any
Jaccard test	amount of overlap	not small	not small
Combinatorial test	number of overlap among different combinations	large	not small

Tests for regions v.s. regions

	Measure object	Reference size	Query size
Projection test	number of overlaps	large	any
Intersection test	number of overlaps	any	any
Jaccard test	amount of overlap	not small	not small
Combinatorial test	number of overlap among different combinations	large	not small

Projection test

$$p-value = \binom{n}{x} P^x (1-P)^{n-x}$$

p-value small: association exists otherwise: overlap by chance

Projection test

Tests for regions v.s. regions

	Measure object	Reference size	Query size
Projection test	number of overlaps	large	any
Intersection test	number of overlaps	any	any
Jaccard test	amount of overlap	not small	not small
Combinatorial test	number of overlap among different combinations	large	not small

Expected frequency is the average of all frequencies from randomization

$$\chi^2 = \sum_{i=1}^{3} \frac{(F_i^{Ob} - F_{average,i}^{Ex})^2}{F_{average,i}^{Ex}}$$

Intersection test

Tests for regions v.s. regions

	Measure object	Reference size	Query size
Projection test	number of overlaps	large	any
Intersection test	number of overlaps	any	any
Jaccard test	amount of overlap	not small	not small
Combinatorial test	number of overlap among different combinations	large	not small

Jaccard test

By comparing true Jaccard with random Jaccards, the chance that true Jaccard is due to random is calculated.

Jaccard test

Tests for regions v.s. regions

	Measure object	Reference size	Query size
Projection test	number of overlaps	large	any
Intersection test	number of overlaps	any	any
Jaccard test	amount of overlap	not small	not small
Combinatorial test	number of overlap among different combinations	large	not small

Combinatorial test

Using Chi-square test to test their difference

Combinatorial test

1. Association between two genomic region sets

2. Association between regions to signal

Association between regions to signal

Boxplot
 Lineplot
 Heatmap

Boxplot (1/3)

Obtain summarized result but lose detailed information.

Lineplot (2/3)

Display averaged spatial distribution of the reads on the given regions, but lose each single data point.

Heatmap (3/3)

Display the signal by different colors and can preserve each single counting number.

Motif Analysis

Motif Analysis

- DNA-binding proteins have sequence affinity.

Interdisziplinäres Zentrum für

Motif Analysis

- DNA-binding proteins work together (co-binding).

- The peaks called represent putative PU.1 binding sites.

- **Goal:** We want to check whether other transcription factors are enriched in these PU.1 binding regions.

- Use the motif enrichment analysis available in RGT.

Motif Enrichment Analysis

Motif Enrichment Analysis

- 1. Find random regions.
- 2. Perform motif matching in the PU.1 peaks and random regions.
- 3. Count Fisher table.
- 4. Perform Fisher's Exact test.

Motif Enrichment Analysis

- 1. Find random regions.
- 2. Perform motif matching in the PU.1 peaks and random regions. $\binom{a+b}{c+d}$
- 3. Count Fisher table.
- 4. Perform Fisher's Exact test.

Performing Motif Enrichment Analysis

- Code in practices/4_motif_analysis/4_motif_analysis.py

- Execution:

cd practices/4_motif_analysis/
sh motif_analysis.sh

- Understanding the code: 1. Motif matching
 - 2. Motif enrichment

Motif Enrichment Analysis Results

