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 8 
Editorial summary 9 

The comparison of 10 computational methods for detecting transcription factor binding sites in DNase 10 

hypersensitive regions in the genome determines which methods work consistently well, how DNase-seq 11 

experimental artifact should be corrected for and what is the best score to rank methods. 12 

Abstract: DNase-seq allows a nucleotide-level identification of transcription factor binding sites based on the 13 
computational search of footprint-like DNase I cleavage patterns on the DNA. Frequently, in high-throughput 14 
methods, experimental artifacts like DNase I cleavage bias impact the computational analysis of DNase-seq 15 
experiments. Here we performed a comprehensive and systematic study on the performance of 16 
computational footprinting methods. We evaluated 10 footprinting methods on a panel of DNase-seq 17 
experiments for their ability to recover cell-specific transcription factor binding sites. We show that three 18 
methods: HINT, DNase2TF and PIQ consistently outperform other evaluated methods. We demonstrate that 19 
correcting the DNase-seq signal for experimental artifacts significantly improves accuracy of computational 20 
footprints. We also propose a score to detect footprints arising from transcription factors with potentially short 21 
residence time. 22 

Next-generation sequencing (NGS) combined with genome-wide mapping techniques, such as DNase-seq, 23 
contributed greatly to our understanding of gene regulation and chromatin dynamics1,2,3. DNase-seq allows a 24 
nucleotide-level identification of transcription factor binding sites (TFBSs). This can be performed by the 25 
computational search of footprint-like regions with low number of DNase I cuts surrounded by regions with 26 
high number of cuts2,3. A number of computational footprinting methods have been proposed in the past 27 
years4-13. Among other applications, these methods allow the delineation of the human regulatory lexicon 28 
with millions of TFBSs over distinct cell types4, the detection of uncharacterized transcription factor (TF) 29 
motifs indicating putative regulatory elements4 and the study of conservation of regulatory regions across 30 
different species14. 31 

NGS-based data are significantly affected by artifacts, which are inherent to the experimental protocols 32 
used15,16,17. An example is the DNase I sequence cleavage bias, which is due to DNase I having different 33 
binding affinities towards specific DNA sequences. He et al.15 showed that sequence cleavage bias around 34 
TFBSs strongly affects the performance of a computational footprinting method4,15 (footprint score; FS) in a 35 
TF-specific manner. They also indicated several TFs, such as nuclear receptors and de novo motifs found 36 
via computational footprinting4, where the DNase-seq profile resembles their sequence cleavage bias 37 
estimate. Furthermore, they indicated that ranking putative TFBS by the number of DNase-seq reads around 38 
putative TFBSs10,15 (tag count; TC) outperforms the ranking by FS. Another experimental aspect affecting the 39 
computational analysis of DNase-seq is the residence time of TF binding. Sung et al.7 showed that short-40 
lived TFs display a lower DNase I cleavage protection pattern, i.e. low number of DNase-seq reads 41 
surrounding the footprint. Moreover, they also noticed that nuclear receptors have DNase-seq profiles 42 
resembling their DNase I sequence cleavage bias estimates. While both studies7,15 show the challenges 43 
imposed by cleavage bias and residence time, there have been a few attempts7,12,15 to address these 44 
computationally. 45 

There is no well-defined gold standard for the evaluation of footprinting methods. All work so far has used 46 
ChIP-seq of TFs in conjunction with motif-based predictions as ground truth. In short, motif-predicted binding 47 
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sites (MPBSs) supported by ChIP-seq peaks are positive examples (true TFBSs), while MPBSs without 48 
ChIP-seq support are negative examples (false TFBSs)10. This evaluation requires TF ChIP-seq experiments 49 
to be carried out on the very same cells as the DNase-seq experiment and has a few caveats. First, TF 50 
ChIP-seq peaks are also observed in indirect binding events4,7,12,18. Second, they have a lower spatial 51 
resolution than DNase-seq. Therefore, false TFBSs might be regarded as true TFBSs by proximity to a real 52 
TFBS of a distinct TF15,17. Recently, Yardımcı et al.12 indicated that footprint quality scores, as measured by 53 
the footprint likelihood ratio (FLR), were significantly higher in cells where the TF was expressed. This 54 
observation indicates that comparing changes in expression and quality of footprints in a pairs of cells could 55 
provide an alternative footprint evaluation measure. Finally, with the exception of a few studies8,11,12,13, 56 
comparative analyses evaluating footprinting methods were based on ChIP-seq of few (<12) TFs and with 57 
the exception of Gusmao et al.8, a maximum of four competing methods were evaluated. Despite the 58 
importance of method evaluation19, there is a clear lack of benchmark data, evaluation standards and studies 59 
performing a comprehensive analysis of computational footprinting methods. 60 

We evaluated 10 computational footprinting methods: Neph4, Boyle5, Wellington6, DNase2TF7, HINT8, 61 
Centipede9, Cuellar10, PIQ11, FLR12 and BinDNase13. In a “ChIP-seq based approach” they are evaluated in 62 
their accuracy to recover TFBSs supported by 88 ChIP-seq TF experiments of two cell types (H1-hESC and 63 
K562) with the area under the receiver operating characteristic curves (AUC) and precision-recall curves 64 
(AUPR). We also propose the “FLR-Exp” methodology, which associates the FLR12 scores for footprints in 65 
cell type pairs with the fold change expression of the TFs associated to the footprints. This analysis is based 66 
on the comparison of footprints and expression of 143 TFs in H1-hESC, K562 and GM12878 cells. We also 67 
evaluate approaches for ranking footprints, strategies for dealing with DNase-seq experimental artifacts and 68 
the effect of TF residence time on footprint predictions. 69 

RESULTS 70 

Computational genomic footprinting methods 71 

Computational footprinting methods can be broadly categorized in segmentation (SEG)4-8 and site-centric 72 
(SC) methods9-13. Several segmentation methods use window search to scan DNase-seq genomic profiles 73 
with a footprint-like shape – short regions with low DNase-seq digestion between short regions with high 74 
DNase-seq digestion (Neph4, Wellington6 and DNase2TF7). Another family of segmentation methods are 75 
based on hidden Markov models (HMMs), in which the hidden states model distinct levels of DNase-seq 76 
cleavage activity around footprints (Boyle5 and HINT8). Site-centric methods analyze DNase-seq profiles 77 
around MPBSs and classify these sites as being either bound or unbound. Most site-centric methods are 78 
based on unsupervised statistical methods like mixture models (FLR12), Bayesian mixture models 79 
(Centipede9) and combination of Gaussian process (GP) and expectation propagation (PIQ11). An alternative 80 
site-centric approach is proposed by Cuellar10, which uses DNase-seq profiles as prior distribution for the 81 
detection of MPBSs. BinDNase is a supervised site-centric method based on logistic regression13. We also 82 
evaluate simple statistics as baseline methods: ranking MPBSs by position weight matrix (PWM-Rank) bit-83 
score10, by ratio of the number of DNase-seq reads inside and around a MPBS (FS-Rank)4,15 and by number 84 
of DNase-seq reads around a MPBS (TC-Rank)10,15. 85 

There are several other relevant characteristics for computational footprinting methods. A few methods allow 86 
the inclusion of additional genomic and/or experimental evidence like conservation scores9, distance to 87 
transcription start sites9 and histone modifications8-10. Only PIQ11 supports the analysis of several DNase-seq 88 
data sets, i.e. experiments with replicates or time series. Another important feature is the correction of 89 
DNase-seq experimental artifacts, which is only supported by DNase2TF7, HINT8 variants (HINT-BC and 90 
HINT-BCN) and FLR9. While HINT-BC, HINT-BCN and DNase2TF use experimental bias statistics to pre-91 
process DNase-seq profiles; FLR builds a “cleavage bias” model within their mixture model in a TF-specific 92 
manner. Most methods use base pair DNase-seq resolution as primary input4-9,11-13. One exception is 93 
Cuellar10, which is based on smoothed DNase-seq signals of windows with 150 bps. Smoothing of base pair 94 
resolution profiles is performed by PIQ via the use of GP models11. BinDNase uses a greedy backward 95 
feature selection approach, which merges read counts of neighboring genomic positions13. Footprinting 96 
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methods also provide statistics to rank footprint predictions. Wellington6 and DNase2TF7 use read count 97 
statistics to provide p-values for each footprint. Several site-centric approaches provide either probabilities 98 
(BinDNase13, Centipede9 and PIQ11) or log-odds scores (FLR12) of footprints. Other methods use statistics 99 
such as FS (Neph4), PWM (Cuelar10) scores or TC (HINT8), to rank predicted footprints. 100 

The availability, usability and scalability of software tools implementing the methods are also important 101 
features. Neph4, HINT8, PIQ11 and Wellington6 provide tutorials and software to run experiments with few 102 
command line calls. Of those, only HINT8, PIQ11 and Wellington6 natively support standard genomic formats 103 
as input. Site centric methods Cuellar10, BinDNase13, Centipede9 and FLR12 require a single execution and 104 
input data per TF and cell, while segmentation methods require an execution per cell only. These site centric 105 
methods have computational demands 5 times (FLR and Cuellar) to 50 times (BinDNase and Centipede) 106 
higher than the slowest segmentation method (Wellington) on our analysis (Supplementary Table 1). The 107 
main method features are summarized in Table 1 and described in the Online Methods. 108 

Association of TF expression with footprint quality 109 

Yardımcı et al. indicated that the FLR of candidate footprints are significantly higher in cells where the TF is 110 
being expressed12. We expand this idea by evaluating if differences in FLR score distribution of footprints 111 
overlapping with MPBSs on a pair of cell types are proportional to differences in the expression of the 112 
respective TFs (Fig. 1a). We observed high average correlation values for the majority of evaluated methods 113 
(r = 0.79) and extremely high correlation values (r > 0.9) for top performing methods on comparisons 114 
between pairs of cell types H1-hESC, K562 and GM12878 (Fig. 1b; Supplementary Fig. 1). We also 115 
evaluated the use of the TC and FS metrics as quality scores instead of FLR. They had lower average 116 
correlation values (TC r = 0.35 and FS r = 0.73; Supplementary Fig. 2). We opt, therefore, to use the FLR 117 
as quality measure for footprints for this evaluation procedure. The correlation between FLR score difference 118 
and expression fold change, which we refer to as “FLR-Exp”, will be used to rank footprinting methods. 119 
Highest values indicate best performance. The FLR-Exp evaluation methodology only requires expression 120 
data and is therefore more generally applicable than TF ChIP-seq based evaluation. However, differently 121 
from the TF ChIP-seq evaluation, the FLR-Exp approach cannot evaluate footprint predictions of individual 122 
TFs. 123 

Impact of experimental artifacts  124 

To understand the nature of artifacts on DNase-seq experiments, we analyzed the sequence bias estimates 125 
on all 61 ENCODE Tier 1 and 2 DNase-seq data sets (Supplementary Table 2). These experiments include 126 
two main DNase-seq protocols, which differ on the number of DNase I digestion events necessary to 127 
generate DNA fragment (single-hit2 and double-hit3). The sequence bias estimates can be defined as the 128 
ratio between the numbers of observed and expected DNase-seq reads starting at the middle of a particular 129 
DNA sequence of length k (k-mer)15. We use here two approaches. The “DHS sequence bias” considers the 130 
sequence bias estimates within DNase hypersensitive sites (DHSs) of each DNase-seq experiment. This 131 
approach captures DNase I cleavage, read fragmentation and sequence complexity bias of DHSs of each 132 
DNase-seq experiment7,15. The “naked DNA sequence bias” considers the sequence bias estimates within 133 
naked DNA DNase-seq experiments12. In this case, all DNA regions are open, therefore the sequence bias 134 
estimates will mainly capture the DNase I cleavage bias12 (Online Methods). A clustering analysis of 135 
sequence bias estimates forms two clear groups, which splits experiments from single-hit and double-hit 136 
protocols (Fig. 2, Supplementary Fig. 3). This indicates that sequence biases are protocol-specific. Naked 137 
DNA sequence bias estimates forms a sub-cluster within estimates from the double-hit experiments. This 138 
highlights that DNase-seq experiments are influenced by more experimental artifacts than DNase sequence 139 
cleavage bias alone. 140 

Next, we extended the analysis by He et al.15 to evaluate the influence of sequence bias on all evaluated 141 
footprinting methods based on the AUC at 10% false positive rate (FPR). HINT was evaluated with DNase-142 
seq signals corrected with either DHS sequence bias (HINT bias-corrected; HINT-BC) and naked DNA 143 
sequence bias (HINT bias-corrected on naked DNase-seq; HINT-BCN). Our analysis shows that only six out 144 
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of 14 evaluated methods (Wellington, Neph, Boyle, DNase2TF, Centipede and FS-Rank) present a 145 
significant negative Pearson correlation (r = –0.35, –0.32, –0.28, –0.28, –0.24 and –0.22, respectively) 146 
between their accuracy performance and amount of sequence bias (Fig. 3a; adjusted p-value < 0.05). 147 
Equivalent results are also observed on the same TFs and cellular conditions analyzed in He et al.15 148 
(Supplementary Fig. 4). Methods explicitly using 6-mer sequence bias statistics (HINT-BC, HINT-BCN and 149 
FLR) or performing smoothing (Cuellar, BinDNase and PIQ) are not significantly influenced by sequence 150 
bias. Moreover, the performance of HINT-BC is the least affected by sequence bias (r = –0.06). Pairwise 151 
comparison of AUC at 10% FPR values of all three HINT variants (HINT-BC, HINT-BCN and HINT) indicates 152 
significant gain in all predictions with sequence bias correction (adjusted p-value < 10-30; Supplementary 153 
Fig. 5a). There is no significant difference between HINT-BC and HINT-BCN, but we observe a higher AUC 154 
on HINT-BC on all but seven TFs. This indicates an advantage of DHS sequence bias correction for the 155 
footprint prediction problem. 156 

As an example, we show sequence bias estimates, corrected and uncorrected DNase-seq average profiles 157 
around TFBSs with highest AUC gain between HINT-BC and HINT (Fig. 3b and c; Supplementary Fig. 6). 158 
The NRF1 and EGR1 DNase-seq profiles indicate that the bias-corrected signal fits better their sequence 159 
affinity than the uncorrected signal. We observe that k-mers with high DHS sequence bias have a high CG 160 
content (r > 0.8 in 11 out of 12 cell types; Supplementary Fig. 7). However, there is no significant 161 
correlation between CG content of MPBSs and either AUC values or differences of AUC from HINT-BC, 162 
HINT-BCN and HINT (p-value > 0.05; Supplementary Fig. 5b). 163 

Comparative analysis of footprinting methods 164 

Given its good performance10,15, we evaluated the use of Tag Count (TC) as the ranking strategy instead of 165 
each method's own ranking for BinDNase, Centipede, Cuellar, DNase2TF, FLR, PIQ and Wellington. 166 
Previous to ranking by TC, site-centric methods required the definition of a minimum probability score to 167 
define active footprints. In all cases, using TC yielded higher AUC values (10% FPR) than using their intrinsic 168 
ranking metric (Supplementary Fig. 8). Concerning site-centric methods, the probability cutoff of 0.9 yielded 169 
highest AUCs, with exception of BinDNase (best at 0.8). These parameters will be used in the next 170 
evaluation analyses. 171 

We next evaluated all the competing methods by measuring the AUC at 1%, 10% and 100% FPRs using the 172 
TF ChIP-seq data. AUC at lower FPRs favors methods with higher sensitivity in expense of specificity. We 173 
also estimated the AUPR, which is indicated for cases with imbalance of positive and negative examples20, 174 
and the FLR-Exp metric. Interestingly, all TF ChIP-seq based metrics indicate a very similar ranking (r > 175 
0.98; Fig. 4a). There is also a high agreement between FLR-Exp and other metrics (r > 0.88). HINT-BC has 176 
the highest FLR-Exp, AUC and AUPR values and significantly outperforms all methods with the exception of 177 
HINT-BCN (adjusted p-value < 0.01; Supplementary Fig. 9; Supplementary Tables 3-6). Ignoring HINT 178 
variants, the next top performing method is DNase2TF, which significantly outperforms all other methods 179 
with the exception of PIQ (adjusted p-value < 0.01). PIQ outperforms all of its lower ranked competitors but 180 
Wellington with AUC (1% FPR) and AUPR (adjusted p-value < 0.01). Concerning the performance of TC-181 
Rank, we observe that the AUC values for 10% and 100% FPR are very close to other footprinting methods 182 
(Fig. 4b, Supplementary Fig. 9). This is not the case for AUC at 1% FPR or AUPR values. With the latter 183 
statistics, all methods but Centipede and Cuellar have significant superior performance than TC (p-value < 184 
0.01; Supplementary Tables 3-6). 185 

Transcription factor residence time  186 

Despite the high average prediction values of top performing footprint methods, they consistently perform 187 
worst in a similar set of TFs, i.e. HINT-BC, DNase2TF and PIQ have 89% of TFs in common in the lower 188 
quartile of AUC at 10% FPR (Supplementary Dataset 1). This list includes nuclear receptors, which has low 189 
residence binding time7 and display a lower DNase I cleavage protection pattern (Supplementary Fig. 10). 190 
To further investigate this, we propose a statistic inspired by the concepts presented in Sung et al.7 to detect 191 
TFs with potential short residence time. The protection score measures the difference between the amounts 192 
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of DNase I digestion in the flanking regions and within the TFBS on bias-corrected DNase-seq signals. We 193 
use this statistic to analyze the predictive performance of methods on TFs with distinct residence time. For 194 
this, we used the comprehensive data set with 233 combinations of DNase-seq experiments and TFs (see 195 
Online Methods). 196 

We observed that TFs with known short residence time on DNA, such as nuclear receptors AR21, ER22 and 197 
GR23, present a negative protection score (Fig. 5a). TFs with intermediate and long residence time on DNA 198 
(C-JUN24 and CTCF25, respectively) present a positive protection score. The amount of protection is clearly 199 
reflected in the bias-corrected DNase-seq profiles (Fig. 5b-d). In addition, Figure 5a also reveals an 200 
association of the protection score and the AUC of HINT-BC. Overall, the protection score positively 201 
correlates with the AUC values of evaluated methods, such as TC (r = 0.19) and HINT-BC (r = 0.26), and 202 
negatively correlates (r = –0.49) with the sequence bias (adjusted p-value < 0.05). These results reinforce 203 
the concept that TFs with potential short residence time can be poorly detected via DNase-seq footprints. 204 

DISCUSSION 205 

Our comparative evaluation analysis indicates the superior performance (in decreasing order) of HINT, 206 
DNase2TF and PIQ in the prediction of active TFBSs in all evaluated scenarios. Moreover, tools 207 
implementing these methods were user friendly and had lower computational demands than other evaluated 208 
methods. Clearly, the choice of computational footprinting approaches should also be based on experimental 209 
design aspects. For example, PIQ is the only method supporting analysis of replicates and time-series. On 210 
the other hand, studies requiring footprint predictions for latter de novo motif analysis should use 211 
segmentation approaches as HINT or DNase2TF. In contrast to positive evaluations of the TC-Rank by 212 
previous works10,15, we show that it has poor sensitivity performance as indicated by the AUC at low FPR 213 
levels. On the other hand, the TC statistic provides the best strategy to rank footprint predictions from other 214 
methods. 215 

The refined DNase-seq protocol and experimental artifacts presented in He et al.13 and TF binding time 216 
presented in Sung et al.7 underscore that robust in silico techniques are required to correct for experimental 217 
artifacts and to derive valid biological predictions. The correction of DNase-seq signal with DHS sequence 218 
bias estimates virtually removes the effects of sequence bias artifacts on computational footprinting. We 219 
demonstrated that such correction can be performed prior to the execution of the computational footprinting 220 
method. On the other hand, ignoring experimental artifacts might lead to false predictions, as observed 221 
previously for predicted de novo motifs (Supplementary Fig. 11). Moreover, the simple protection score can 222 
indicate footprints of TFs with potential short binding time. Thus, footprint predictions of TFs with low 223 
protection score should be interpreted with caution. 224 

The assessment of footprint methods is a demanding task, both computationally and technically. We have 225 
created a fair and reproducible benchmarking data set for evaluation of protein-DNA binding using two 226 
validation approaches: TF ChIP-seq and FLR-Exp. Although the rationales of the ChIP-seq and FLR-Exp 227 
evaluation procedures are, in principle, very different, we observed a high agreement between their 228 
respective ranking of methods. This is evidence that this study provides a robust map of the accuracy of 229 
state-of-the-art computational footprinting methods. Finally, this study provides all statistics, basic data and 230 
scripts to evaluate future computational footprinting methods. This is an important resource for increasing 231 
transparency and reproducibility of research on computational methods for DNase-seq data. 232 
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Figure 1 | FLR-Exp evaluation metric. (a) FLR score distribution of footprints predicted with HINT-BC 286 
overlapping with MPBSs of selected TFs. These TFs have increasing expression in K562 (red) compared 287 
with H1-hESC cells (blue). The signed Kolmogorov-Smirnov (KS) statistic quantifies the separation of both 288 
distributions. The box plot depicts the distribution median value (middle dot) and first and third quartiles (box 289 
extremities). The whiskers represent the 1.5 IQR and external dots represent outliers (data greater than or 290 
smaller than 1.5 IQR). (b) Scatter plot with signed KS statistic and expression fold change for 143 TFs. 291 
There is a clear association between TF expression and KS statistic (r = 0.97, adjusted p-value < 10-10). 292 
 293 
Figure 2 | Clustering of bias estimates. Ward's minimum variance clustering based on pairwise Spearman 294 
correlation coefficient (r) from bias estimates of all ENCODE's Tier 1 and naked DNA DNase-seq data. 295 
DNase-seq experiments were based on single-hit (red), double hit (blue) protocols or naked DNA (yellow).  296 
 297 
Figure 3 | Effects of sequence biases on methods. (a) Association between the performance of 298 
footprinting methods (relative to TC-Rank performance) and their sequence bias estimated for 88 TFs 299 
binding on cell types H1-hESC and K562. The x-axis represents the correlation between the uncorrected and 300 
bias signal (observed versus bias signal; OBS). The OBS is evaluated for each TF by measuring the 301 
uncorrected DNase-seq signal and the bias signal for every MPBS that overlaps a footprint from the 302 
evaluated method. Then, the Spearman correlation is evaluated between the average uncorrected and bias 303 
signals. Higher OBS values indicate higher bias. The y-axis represents the ratio between the AUC at 10% 304 
FPR for each evaluated method and the TC-Rank method; higher values indicate higher accuracy. (b-c) 305 
Average bias signal (top) and uncorrected/bias-corrected DNase-seq signal (bottom) for the TFs: (b) NRF1 306 
and (c) EGR1. Signals in the bottom graph were standardized to be in the interval [0,1]. The motif logo 307 
represents all underlying DNA sequences centered on the TFBSs. 308 
 309 
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Figure 4 | Evaluation of computational footprinting methods. (a) Average rankings for the evaluated 310 
computational footprinting methods. The rankings are given for all evaluation criteria: FLR-Exp, TF ChIP-seq 311 
based AUC (at 100%, 10% and 1% FPR) and AUPR. (b) For all evaluated methods we show the FLR-Exp 312 
values (as a combination of all pairwise comparison within cell types H1-hESC, K562 and GM12878), 313 
median TF ChIP-seq based AUC (at 100%, 10% and 1% FPR) values and median AUPR values. HINT-BC, 314 
HINT-BCN, HINT, DNase2TF are ranked as top four methods by all evaluation metrics. All baseline methods 315 
(FS-Rank, PWM-Rank and TC-Rank) are in the bottom four positions of the ranks. Note that BinDNase could 316 
not be evaluated with the FLR-Exp, as it requires ChIP-seq data for training. 317 
 318 
Figure 5 | Impact of transcription factor residence binding time on computational footprinting. (a) 319 
Scatter plot with the protection score (x-axis) versus TF ChIP-seq based AUC (at 10% FPR) of HINT-BC (y-320 
axis) for 233 TFs binding on 11 cell types. We highlight nuclear receptors AR, ER and GR (short residence 321 
time, red); C-JUN (intermediate residence time, blue); CTCF (long residence time, green) and TFs with either 322 
high (> 6) protection score or low (< 0.8) AUC values (grey). (b-d) Average bias signal (top) and 323 
uncorrected/bias-corrected DNase-seq signal (bottom) for the TFs (b) ER, (c) C-JUN and (d) CTCF. Signals 324 
in the bottom graph were standardized to be in the interval [0,1]. The motif logo represents all underlying 325 
DNA sequences centered on the TFBSs. 326 
 327 
Table 1 | Overview of methods. Main characteristics of the evaluated methods. Methods obtain a '+' sign 328 
for availability if they are public available. Boyle method is not public, but authors provide footprint 329 
predictions of a few cells. Concerning usability, methods natively supporting standard genomic files and 330 
being executed with few commands (≤ 3) display a '+' sign. 331 
 332 

Name Type Algorithm Bias 
Correction

Resolution/  
Smoothing

Footprint 
Ranking Availability Usability Others 

BinDNase SC Logistic 
regression 

None Base pair / 
sliding 
window 

Probability + - Require TF 
ChIP-seq 
for training 

Boyle SEG HMM None Base pair None - -  

Centipede SC Bayesian 
mixture 
model 

None Base pair Probability + - Integrates 
histone and 
sequence 
data 

Cuellar SC Weighted 
motif match 

None Sliding 
window 

PWM score + -  

DNase2TF SEG Sliding 
window 

4-mer (DHS 
sequence 
bias) 

Base pair p-values + +  

FLR SC Mixture 
model 

6-mer 
(naked DNA 
sequence 
bias) 

Base pair Log-odds + - Bias 
correction 
for each TF 

HINT SEG HMM 6-mer (DHS 
sequence 
bias) 

Base pair TC + + Integrates 
histones 
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Neph SEG Sliding 
window 

None Base pair FS + -  

PIQ SEG GP / 
expectation 
propagation 

None Base pair / 
GP 

Probability + + Support 
replicates, 
time series 

Wellington SEG Sliding 
window 

None Base pair p-value + +  

 333 
METHODS 334 

Data. DNase-seq aligned reads were obtained from ENCODE1. To perform the computational footprint 335 
experiments, we obtained data regarding cell types H1-hESC, HeLa-S3, HepG2, Huvec, K562, LNCaP and 336 
MCF-7 from Crawford's Lab (labeled with the initials of their institution “DU”) and cell types H7-hESC, 337 
HepG2, Huvec, K562 and m3134 from Stamatoyannopoulous' lab (labeled with the initials of their institution 338 
“UW”). We also used naked DNA (deproteinized) DNase-seq experiments from cell types MCF-7 and K562 339 
(DU)12 and IMR90 (UW)26. DNase-seq experiments labeled with “DU” follow the single-hit protocol, while the 340 
experiments labeled with “UW” follow the double-hit protocol. In addition, to perform the DNase-seq bias 341 
estimation clustering, we used all cell types from ENCODE's Tier 1 and Tier 2 cell types1. See 342 
Supplementary Table 2 for a full DNase-seq data description. 343 
 344 
Transcription factor (TF) ChIP-seq enriched regions (peaks and summits) were obtained in ENCODE 345 
analysis working group (AWG)1 track with exception of the following experiments, in which the enriched 346 
regions were obtained using bowtie-227 and MACS28. AR (R1881 treatment) ChIP-seq raw sequences for 347 
LNCaP cell type was obtained in gene expression omnibus (GEO) with accession number GSM35364429. 348 
ER (40 and 160 minutes after estradiol treatment) ChIP-seq raw sequences for MCF-7 cell type was 349 
obtained in GEO with accession number GSE5485530. GR (dexamethasone treatment) ChIP-seq raw 350 
sequences for m3134 cell type was obtained in the sequence read archive (SRA) under study number 351 
SRP00487131. All organism-specific data (DNase-seq and ChIP-seq) are based on the human genome build 352 
37 (hg19), except the DNase-seq for m3134 and ChIP-seq for GR, which were based on mouse genome 353 
build 37 (mm9). Chromosome Y was removed from all analyses. Expression of cells H1-hESC, K562 and 354 
GM12878 were obtained from ENCODE (GSE12760 and GSE14863)1. 355 
 356 
TF motifs (position frequency matrices; PFMs) were obtained from the Jaspar32, Uniprobe33 and Transfac34 357 
repositories. Non-organism-specific data (PFMs) were obtained for the subphylum Vertebrata. De novo 358 
PFMs 0458 and 0500 were downloaded from 359 
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/supplementary/integration_data_jan2011/byDataType/foot360 
prints/jan2011/de.novo.pwm4. The accession codes for all TF ChIP-seq experiments and PFM IDs are 361 
available in the Supplementary Datasets 1a and 2b-d. 362 
 363 
Sequence bias correction. DNase I hypersensitivity sites. A first task is the identification of DNase I 364 
hypersensitivity sites (DHSs). A nucleotide-resolution genome-wide signal was created for each DNase-seq 365 
data set by counting reads mapped to the genome. Here, we considered only the 5' position of the aligned 366 
reads (position at which DNase I cleaved the DNA). The genomic signal was created by counting the number 367 
of reads that overlapped at each genomic position. 368 
 369 
More formally, we define a raw genomic signal as a vector 370 

ݔ = ൻݔଵ, … ,  ேൿ, 371ݔ
where ܰ equals the number of bases in the genome and each ݔ௜ ∈ ܰ଴ is the number of DNase-seq reads in 372 
which the 5′ position mapped to position ݅. We also generate strand specific counts ܺ௦, where ݏ ∈ ሼ+, −ሽ 373 
describes the strand the read was mapped to. 374 
 375 
DHSs are estimated based on the DNase I raw signal. First, the F-seq software35 was used to create 376 
smoothed DNase-seq signals using Parzen density estimates. Then, the smoothed signal ݔ௙௦௘௤ was fit to a 377 
gamma distribution, 378 

௙௦௘௤ݔ ∼ ,ߢሺ߁  ሻ, 379ߠ
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by evaluating ߢ and ߠ based on mean and standard deviation estimates. Finally, the enriched regions 380 
(DHSs) were found by establishing a cutoff based on a p-value of 0.011,35. We refer to DHSs as a set of 381 
genomic intervals 382 

ܪ = ൛ℎଵ, … , ℎ௅ൟ, 383 
where ℎ௜ = ሾ݉, ݊ሿ for ݉ < ݊ ∈ ܰ and ܮ is the total number of DHSs. We ignore for simplicity of notation the 384 
fact that intervals are defined on distinct chromosomes or contigs. 385 
 386 
Estimation of DNase-seq sequence bias. We use two approaches to estimate sequence bias of DNase-seq 387 
experiments: (1) aligned reads inside DHSs from DNase-seq experiments (termed “DHS sequence bias”) 388 
following He et al.15 and (2) all aligned reads for naked DNA experiments (termed “naked DNA sequence 389 
bias”) following Yardımcı et al.12. The observed cleavage score for a k-mer ݓ corresponds to the number of 390 
DNase I cleavage sites centered at ݓ. The background cleavage score is defined by the total number of 391 
times ݓ occurs. Then, the bias estimation is computed as the ratio between the observed and background 392 
cleavage scores. Mathematical formalizations of the bias estimation will be made based on the DHS 393 
sequence bias approach. 394 
 395 
We define ܩ௦ as the reference genome sequence with length ܰ for strand ݏ ∈ ሼ+, −ሽ. ܩ௦ሾ݅. . ݆ሿ indicates the 396 
sequence from positions ݅ to ݆ (including both within the interval). For each k-mer ݓ with length k the 397 
observed cleavage score ݋௪ can be calculated as 398 

௪௦݋ = 1 + ∑ ∑ ௝ݔ
௦

௝∈௛೔
௅
௜ୀଵ ૚ ቀܩ௦ ቂ݆ − ௞

ଶ . . ݆ + ௞
ଶቃ =  ቁ, 399ݓ

where ૚ሺ. ሻ is an indicator function. 400 
 401 
Similarly, the background cleavage score ݎ௪ can be evaluated as 402 

௪௦ݎ = 1 + ∑ ∑ ૚௝∈௛೔
௅
௜ୀଵ ቀܩ௦ ቂ݆ − ௞

ଶ . . ݆ + ௞
ଶቃ =  ቁ. 403ݓ

 404 

Finally, the cleavage bias ܾ௜
௦ for a genomic position ݇ + 1 ≤ ݅ ≤ ܰ − ݇ + 1, given that ݓ = ௦ܩ ቂ݅ − ௞

ଶ . . ݅ +405 
௞
ଶቃ, can be calculated as 406 

ܾ௜
௦ = ௢ೞೢ ⋅ோ

௥ೢೞ ⋅ைೞ, 407 

where ܱ௦ indicates the total number of reads aligned to strand ݏ in DHSs 408 
ܱ௦ = ∑ ∑ ௝ݔ

௦௝∈௛೔
௅
௜ୀଵ , 409 

and ܴ indicates the total number of k-mers in DHS positions 410 
ܴ = ∑ ∑ 1௝∈௛೔

௅
௜ୀଵ . 411 

 412 

The bias score ܾ௜
௦ represents how many times the k-mer sequence ܩ௦ ቂ݅ − ௞

ଶ . . ݅ + ௞
ଶ + 1ቃ was cleaved by the 413 

DNase I enzyme in comparison to its total occurrence in: (1) DHSs (DHS sequence bias approach); (2) the 414 
entire genome (naked DNA sequence bias approach). As observed by He et al.15 a 6-mer bias model 415 
captures more information than ݇ < 6 models and the information added with ݇ > 6 models are not 416 
significant. Therefore, in this study, all analyses were performed using a 6-mer bias model. 417 
 418 
DNase-seq sequence bias correction. A “smoothed corrected signal” was calculated using smoothed 419 
versions of both raw DNase-seq (ݔప௦̂) and the bias score signal (ܾ̂௜

௦)15. These smoothed signals were based 420 
on a 50 bp window and can be written as 421 

௜ݔ̂
௦ = ∑ ௝ݔ

௦௜ାଶସ
௝ୀ௜ିଶହ

ܾ̂௜
௦ = ௕೔

ೞ

∑ ௕ೕ
ೞ೔శమర

ೕస೔షమఱ

. 422 

 423 
With these results we are able to define the smoothed corrected signal as 424 

ܿ௜
௦ = ௜ݔ̂

௦ܾ̂௜
௦. 425 

 426 
Finally, the bias-corrected DNase-seq genomic signal (ݕ) can be obtained by applying 427 

௜ݕ
௦ = ௜ݔሺ ݃݋݈

௦ + 1ሻ − ሺܿ௜ ݃݋݈
௦ + 1ሻ.                                                  (1) 428 

 429 
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The corrected DNase-seq signal generated by equation (1) may include negative values. Since some 430 
posterior statistical analyses required a signal consisting only of positive values, we have shifted the entire 431 
signal by adding the global minimum value. 432 
 433 
Computational footprinting methods. In this section we present an overview of the computational 434 
footprinting methods used in this study. Computational resources necessary to the execution of each method 435 
were summarized in Supplementary Table 1. 436 
 437 
Neph method. Neph et al.4 used a simplified version of the segmentation method originally proposed in 438 
Hesselberth et al.36. Their method consists on applying a sliding window to find genomic regions (6-40 bp) 439 
with low DNase I cleavage activity between regions (3-10 bp) with intense DNase I digestion. The footprint 440 
score (FS) is evaluated and used to determine the most significant predictions. 441 
 442 
We obtained the footprint predictions for cell type K562 (DU) in 443 
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/supplementary/integration_data_jan2011/byDataType/foot444 
prints/jan2011/all.footprints.gz4. As predictions were not available for other DNase-seq experiments, we 445 
obtained the scripts and parameterization through Neph et al.4 footprinting method code repository at 446 
https://github.com/StamLab/footprinting2012. Briefly, we used the DNase I raw signal as input with the 447 
parameters from the original publication: flanking component length varied between 3-10 bp and central 448 
footprint region length varied between 6-40 bp. Afterwards, the footprints were filtered by an FDR of 1%, 449 
which was estimated based on the FS distribution in each cell type4. Finally, we consider only predictions 450 
that occurred within DNase-seq hotspots, evaluated using the method first described in Sabo et al.37. We 451 
obtained all hotspots generated by Stamatoyannopoulous' lab in ENCODE1 for cell types GM12878 452 
(wgEncodeEH000492; GSM736496 and GSM736620), H1-hESC (wgEncodeEH000496; GSM736582) and 453 
K562 (wgEncodeEH000484; GSM736629 and GSM736566). We will refer to this framework as “Neph”. 454 
 455 
Boyle method. Boyle et al.5 designed a segmentation approach, which is based on using hidden Markov 456 
models (HMMs) to predict footprints in specific DNase I cleavage patterns. Briefly, the HMM uses a 457 
normalized DNase-seq cleavage signal to find regions with depleted DNase I digestion (footprints) between 458 
two peaks of intense DNase I cleavage. Such pattern reflects the inability of the DNase I nuclease to cleave 459 
sites where there are proteins bound. As the DNase-seq profiles required a nucleotide-resolution signal, 460 
which is usually noisy, the authors used a Savitzky-Golay smoothing filter to reduce noise and to estimate 461 
the slope of the DNase-seq signal38. Their HMM had five states, with specific states to identify the 462 
decrease/increase of DHS signals around the peak-dip-peak region. Since no source code or software is 463 
provided, we used footprint predictions from Boyle et al.5 available at 464 
http://fureylab.web.unc.edu/datasets/footprints/. We will refer to this method as “Boyle”. 465 
 466 
Centipede. Centipede is a site-centric approach, which gathers experimental and genomic information 467 
around motif-predicted binding sites (MPBSs). It then uses a Bayesian mixture model approach to label each 468 
retrieved site as 'bound' or 'unbound'9. The experimental and genomic data used include DNase-seq, 469 
position weight matrix (PWM) bit-score, sequence conservation and distance to the nearest transcription 470 
start site (TSS). The experimental data input was generated by fetching the raw DNase-seq signal 471 
surrounding a 200 bp window centered on each MPBS. Additionally, to create the genomic data input, we 472 
obtained PhastCons conservation score (placental mammals on the 46-way multiple alignment)39 and 473 
Ensembl gene annotation from ENCODE1,40 to create the prior probabilities in addition to the PWM bit-score. 474 
 475 
Centipede software was obtained at http://centipede.uchicago.edu/ and executed to generate posterior 476 
probabilities of regions being bound by TFs. We have previously observed that Centipede is sensitive to 477 
certain parameters. Therefore, Centipede parameterization was defined with an extensive computational 478 
evaluation described in Gusmao et al.8. 479 
 480 
Cuellar Method. Cuellar-Partida et al.10 proposed a site-centric method to include DNase-seq data as priors 481 
for the detection of active transcription factor binding sites (TFBSs). It is based on a probabilistic 482 
classification approach to compute better log-posterior odds score than the ones observed by purely 483 
sequence-based approaches. We applied this method as described in Cuellar-Partida et al.10. We created a 484 
smoothed DNase-seq input signal by evaluating the number of DNase-seq cleavage based on a 150 bp 485 
window with 20 bp steps. We obtained their scripts at http://research.imb.uq.edu.au/t.bailey/SD/Cuellar2011/ 486 
and created priors using the smoothed version of the DNase-seq signal. As suggested by the authors, the 487 
priors were submitted to the program FIMO41 to obtain the predictions. We will refer to this method as 488 
“Cuellar”. 489 
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 490 
Wellington. Wellington is a segmentation approach based on a Binomial test. For a given candidate footprint, 491 
it tests the hypothesis that there are more reads in the flanking regions than within the footprint. Following an 492 
observation that DNase-seq cuts of the double-hit protocol are strand-specific, Wellington only considers 493 
reads mapped to the upstream flanking region of the footprints. Wellington automatically detects the size of 494 
footprints (within a user-defined interval) and sets flanking regions at a user-defined length. We have 495 
obtained Wellington's source code in http://jpiper.github.com/pyDNase and executed it with default 496 
parameters. Briefly, we used a footprint FDR cutoff of –30, footprint sizes varying between 6 and 40 with 1 497 
bp steps and shoulder size (flanking regions) of 35 bp. 498 
 499 
Protein interaction quantification (PIQ). The protein interaction quantification (PIQ) is a site-centric method, 500 
which uses Gaussian process to model and smooth the footprint profiles around candidate MPBSs (± 100 501 
bp)11. Active footprints are estimated with an expectation propagation algorithm. Finally, PIQ indicates the 502 
set of motifs which footprint signals are distinguishable from noise to reduce the set of candidate TFs. We 503 
obtained PIQ implementation in http://piq.csail.mit.edu and executed it with default parameters, which can be 504 
found in the script common.r. Briefly, MPBSs were generated with the script pwmmatch.exact.r. The DNase-505 
seq signal was created using the script bam2rdata.r. And the footprints were detected with the script pertf.r. 506 
 507 
Footprint mixture (FLR). Yardımcı et al.12 proposed a site-centric method based on a mixture of multinomial 508 
models to detect active/inactive MPBSs. The method uses an expectation maximization algorithm to find a 509 
mixture of two multinomial distributions, representing active (footprints) and inactive (background) MPBSs. 510 
The background model is initialized with either naked DNA sequence bias frequencies or estimated de novo. 511 
After successful estimation, MPBSs are scored with the log odds ratio for the footprint versus background 512 
model. The model takes DNase-seq cuts within a small window around the candidate profiles (± 25 bp) as 513 
input. DNase-seq sequence bias is estimated for 6-mers based on the DNA sequences extracted within the 514 
same regions in which the cuts were retrieved. Method implementation was obtained in https://ohlerlab.mdc-515 
berlin.de/software/FootprintMixture_109/. We executed the method using naked DNA sequence bias 516 
frequencies for initialization of the background models. The width of the window surrounding the TFBS 517 
(PadLen) was set to the default value of 25 bp. Also, we use the expectation maximization to re-estimate 518 
background during training (argument Fixed set to FALSE). We will refer to this method as “FLR”. 519 
 520 
DNase2TF. DNase2TF is a segmentation approach based on a binomial z-score, which evaluates the 521 
depletion of DNase-seq reads around the candidate footprints7. At a second step, DNase2TF interactively 522 
merges close candidate footprints whenever they improve depletion scores. DNase2TF corrects for DNase I 523 
sequence bias using cleavage statistics for 2- or 4-mers. We obtained source code from 524 
http://sourceforge.net/projects/dnase2tfr/ and executed DNase2TF with a 4-mer sequence bias correction. 525 
Other parameters were set to their default values: minw = 6, maxw = 30, z_threshold = -2 and FDR = 10-3. 526 
 527 
HINT, HINT-BC and HINT-BCN. Recently, Gusmao et al.8 have proposed the segmentation method HINT 528 
(HMM-based identification of transcription factor footprints) as an extension of Boyle method5. HINT is based 529 
on eight-state multivariate HMMs and combines DNase-seq and histone modification ChIP-seq profiles at the 530 
nucleotide level for the identification of footprints. The pipeline of HINT method starts by normalizing the 531 
DNase I cleavage signal using within- and between-dataset normalizations. Then, the slope of the 532 
normalized signals is evaluated to identify the DNase-seq signal increase and decrease. Afterwards, an 533 
HMM is trained on a supervised manner (maximum likelihood) based on a single manually annotated 534 
genomic region. To aid such manual annotation the normalized and slope signals are used in combination 535 
with MPBSs for all available PFMs in the repositories Jaspar32 and Uniprobe33. Finally, the Viterbi algorithm 536 
is performed on the trained HMMs inside regions consisting of DHSs extended by 5,000 bp upstream and 537 
downstream. All parameters were set as described in Gusmao et al.8. 538 
 539 
We have performed two modifications to the method described in Gusmao et al.8. First, to perform a 540 
standardized comparison, we modified HINT to allow only DNase-seq data. The modified HMM model 541 
contains five states. The three histone-level states were removed and new transitions were created from the 542 
BACKGROUND state to the DNase UP state and from the DNase DOWN state to the BACKGROUND state. 543 
The second modification concerns the use of bias-corrected DNase-seq signal prior to normalization steps. 544 
We will call the method HINT bias-corrected (HINT-BC), for correction based on “DHS sequence bias”, and 545 
HINT bias-corrected on naked DNA (HINT-BCN) for the “naked DNA sequence bias” estimation. These 546 
modifications required retraining of the HMM models. For this, we used the same manual annotation 547 
described in Gusmao et al.8. The novel methods and trained models are available as a command-line tool at 548 
www.costalab.org/hint-bc. 549 
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 550 
BinDNase. BinDNase is a site-centric method based on logistic regression to predict active/inactive 551 
MBBSs13. The algorithm starts with base pair resolution DNase-seq signal around the MPBSs (± 100 bps) 552 
and selects discriminatory features using a backward greedy approach. As a supervised approach, the 553 
method requires positive and negative examples, which can be obtained from TF ChIP-seq data. We have 554 
used DNase-seq data around MPBSs on chromosome 1 for training. These MPBSs were subsequently 555 
removed from the evaluation procedure. The definition of positive and negative examples was the same as 556 
in our evaluation data sets. Note that this is the only method evaluated here which requires TF ChIP-seq 557 
examples for training. We also point the fact that BinDNase did not successfully executed for 19 TFs of our 558 
evaluation data set (POU5F1, REST, RFX5, SP1, SP2, SRF, TCF12 and ZNF143 binding in H1-hESC; 559 
ARID3A, CTCF, IRF1, MEF2A, PU1, REST, RFX5, SP1, SP2, STAT2 and ZNF263 binding in K562) given 560 
our maximum running time criteria (three weeks). Method implementation was obtained at 561 
http://research.ics.aalto.fi/csb/software/bindnase/ and required/provided no parameter selection. 562 
 563 
Footprint score rank (FS-Rank). He et al.15 used a site-centric MPBS ranking scheme termed “footprint score 564 
(FS)”, which is based on a scoring metric from the footprinting methodology proposed in Neph et al.4. The FS 565 
statistic is defined as 566 

ெ௉஻ௌ೔ܵܨ = − ൬௡಴,೔ାଵ
௡ೃ,೔ାଵ + ௡಴,೔ାଵ

௡ಽ,೔ାଵ൰, 567 

where ܤܲܯ ௜ܵ = ሾ݉௜, ݊௜ሿ is the ݅-th MPBS which extends from genomic positions ݉௜ to ݊௜ and ܤܲܯ ௜ܵ =568 
ሺ݉ + ݊ሻ 2⁄ . The FS uses the DNase-seq signal in the center (݊஼,௜) of the MPBS and its upstream (݊௅,௜) and 569 
downstream (݊ோ,௜) flanking regions. These variables can be defined as 570 

݊஼,௜ = ∑ ௝ݔ
௡೔
௝ୀ௠೔

݊ோ,௜ = ∑ ௝ݔ
ଶ௡೔ି௠೔
௝ୀ௡೔

݊௅,௜ = ∑ ௝ݔ
௠೔
௝ୀଶ௠೔ି௡೔

                                                            (2) 571 

 572 
Tag count rank (TC-Rank). The site-centric method which we refer to as “tag count (TC)”, corresponds to the 573 
number of DNase I cleavage hits in a 200 bp window around predicted TFBS as defined in He et al.15. This 574 
can be written as 575 

ெ௉஻ௌ೔ܥܶ = ∑ ௝ݔ
ெ௉஻ௌ೔ାଽଽ
௝ୀெ௉஻ௌ೔ିଵ଴଴ . 576 

 577 
Both TC and FS can be used as quality scores for footprints. However, as a method (termed TC-Rank and 578 
FS-Rank) it consists on attributing these quality scores to each MPBS and evaluating the performance at 579 
these ranked MPBS. This observation also holds for the PWM-Rank method described below. 580 
 581 
Evaluation. Motif-predicted binding sites (MPBSs). Method evaluation was performed with a site-centric 582 
binding site statistics. For this, we generated position weight matrices (PWMs) from PFMs by evaluating the 583 
information content of each position and performing background nucleotide frequency correction42. This was 584 
performed using Biopython43. Then, we created MPBSs by matching all PWMs against the human (hg19) 585 
and mouse (mm9) genomes using the fast performance motif matching tool MOODS44. This procedure 586 
produces “PWM bit-scores” for every match. We determined a bit-score cutoff threshold by applying the 587 
dynamic programming approach described in Wilczynski et al.45 with a false positive rate (FPR) of 10-4. All 588 
site-centric scores were based on the set of MPBSs after the application of the cutoff threshold. Also, the 589 
PWM bit-score was used as a baseline method and will be referenced as “PWM-Rank”. 590 
 591 
Method comparison. Methods were evaluated using a site-centric approach10, which combines MPBSs with 592 
ChIP-seq data for every TF. In this scheme, MPBSs with ChIP-seq evidence (located within 100 bp from the 593 
ChIP-seq peak summit) are considered “true” TFBSs; while MPBSs without ChIP-seq evidence are 594 
considered “false” TFBSs. Every TF prediction that overlaps a true TFBS is considered a correct prediction 595 
(true positive; TP) and every prediction that overlaps with a false TFBS is considered an incorrect prediction 596 
(false positive; FP). Therefore, true negatives (TN) and false negatives (FN) are, respectively, false and true 597 
TFBSs without overlapping predictions. To assess the accuracy of digital genomic footprinting methods we 598 
created receiver operating characteristic (ROC) curves. Briefly, ROC curves describe the sensitivity (recall) 599 
increase as we decrease the specificity of the method. The area under the ROC curve (AUC) metric was 600 
evaluated at 100%, 10% and 1% false positive rates (FPRs). We also evaluated the area under the 601 
precision-recall curve (AUPR). This metric is indicated for problems with imbalanced data sets (distinct 602 
number of positive and negative examples)20,46. 603 
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 604 
Segmentation approaches (Boyle, DNase2TF, HINT, Neph and Wellington) provide footprint predictions that 605 
do not necessarily encompass all MPBSs. To create full ROC curves for these methods, we first ranked all 606 
predicted sites by their DNase I cleavage tag count followed by all non-predicted sites ranked by their tag 607 
count. In order to present a fair comparison, this approach was also applied to all site-centric methods 608 
(Centipede, Cuellar, FLR and PIQ). For that, we considered distinct probability thresholds of (0.8, 0.85, 0.9, 609 
0.95, 0.99) for detection of footprints on all site-centric methods. We performed additional experiments to 610 
select the best threshold per method (see Supplementary Fig. 8). 611 
 612 
Our TF ChIP-seq based comparative experiments comprise the following three evaluation scenarios. All 613 
evaluation statistics and method performances are available at the Supplementary Dataset 1. 614 
 615 
He Dataset: To replicate the analysis performed by He et al.15, we analyzed DNase-seq from cell types K562 616 
(UW), LNCaP (DU) and m3134 (UW) on 36 TFs and we evaluated the methods PWM, FS, TC, HINT, HINT-617 
BC and HINT-BCN. 618 
 619 
Benchmarking Dataset: For comparative analysis of several competing methods, we selected the two cell 620 
types with highest number of TF ChIP-seq data sets evaluated in our study: K562 (DU) with 59 TFs and 621 
H1hesc (DU) with 29 TFs. We can therefore make use of predictions provided by Gusmao et al.8 and Boyle 622 
et al.5, which includes evaluation of PWM, Boyle, Cuellar, Centipede, HINT and Neph methods. For this data 623 
set, we have estimated novel footprints for FS, TC, HINT-BC, HINT-BNC, DNase2TF, PIQ, Wellington and 624 
FLR methods, which were not previously evaluated. 625 
 626 
Comprehensive dataset: Lastly, we have compiled a comprehensive data set containing 233 combinations of 627 
cells and TFs with matching cellular background. This data set was built from a catalog of 144 TF ChIP-seq 628 
and 13 DNase-seq data sets. This data is used to evaluate the effects of bias correction and TF binding time. 629 
In this scenario we evaluated the methods PWM, FS, TC, HINT, HINT-BC and HINT-BCN. 630 
 631 
Expression-based evaluation (FLR-Exp). As shown in Yardımcı et al.12, ChIP-seq evaluation of putative 632 
TFBSs may present biases regarding the fact that ChIP-seq data alone is not able to distinguish direct from 633 
indirect binding events. Consequently, we performed an evaluation procedure which combines MPBSs with 634 
differentially expressed genes from two cell types. The method evaluates the association of the quality of 635 
footprints overlapping particular motifs and the expression of the TF. 636 
 637 
We used limma47 to perform between-array normalization on expression of H1-hESC, K562 and GM12878 638 
cells and obtain fold change estimates. Then, we retrieved all non-redundant PFMs from Jaspar in which 639 
gene symbol is a perfect match with genes present in the array platform. This leads us to 143 PFMs (see 640 
Supplementary Datasets 2b-d). We applied a genome-wide motif matching using these PFMs. 641 
 642 
Afterwards, we evaluated the FLR12 score, TC15 and FS15 for the footprints of each evaluated method, which 643 
intersects with MPBSs of a particular motif. We only considered the footprints within DHSs that are in 644 
common between the cell type pair being evaluated, as described in Yardımcı et al.12. We expect that TFs 645 
expressed in cell type A would present higher values regarding these metrics (FLR, TC and FS) with DNase-646 
seq from cell type A in comparison with these metrics evaluated with DNase-seq from cell type B, and vice-647 
versa. We used a two-sample Kolmogorov-Smirnov (KS) test to assess the difference between each metrics' 648 
distribution between the two cell types being evaluated. The KS statistic, which varies from 0 to 1, is used to 649 
indicate the difference between two distributions; higher values indicate higher differences. As the KS score 650 
do not indicate the direction of the changes in distribution, we obtained a signed version by multiplying KS 651 
statistic by –1 in cases where the median of A < median of B. We calculate the Spearman correlation 652 
between the signed KS test statistic and the expression fold change for each TF (see Supplementary Fig. 1 653 
and 2). Positive values indicate an association between expression of TFs and quality of footprint 654 
predictions. We will call this correlation “FLR-Exp”. Results for FLR-Exp analysis are summarized in 655 
Supplementary Dataset 2a. 656 
 657 
Protection score. We propose a measure to detect TF-specific footprint protection for a given DNase-seq 658 
experiment and MPBSs of a given motif/TF. As previously indicated in Sung et al.7, fewer DNase-seq cuts 659 
(protection) surrounding the binding site characterizes TFs with shorter binding times. More formally, the 660 
protection score for a set of ܵܤܲܯ is defined as: 661 
 662 
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 663 
where ܵܲܤܯ = ൛ܤܲܯ ଵܵ, … , ܤܲܯ ,ேൟ is set of binding sites for a given motifܵܤܲܯ ௜ܵ = ሾ݉௜, ݊௜ሿ is the 664 
genomic location of the ݅-th binding site and ݊஼,௜, ݊௅,௜ and ݊ோ,௜ are the number of DNase-seq reads in the 665 
binding site, upstream and downstream flanking positions, respectively (see equation (2) for details). 666 
 667 
In short, the protection score indicates the average difference of DNase-seq counts in the flanking region 668 
and the DNase-seq counts within the MPBS. Positive values will indicate protection in the flanking regions, 669 
while values close to zero or negative indicate no protection. The protection score is a similar statistic as the 670 
FS15. The main difference is that the FS score measures the ratio between reads in flanking versus binding 671 
sites, while the protection score measures the difference. Finally, since we are interested in using the 672 
protection score as a measure of quality for a given TF and set of footprint predictions, we only evaluate 673 
MPBSs overlapping with footprints for a given cell type. The DNase-seq count values are previously 674 
corrected for DHS sequence bias and coverage differences. Results for protection scores are provided in 675 
Supplementary Dataset 1. 676 
 677 
Statistical methods. The non-parametric Friedman-Nemenyi hypothesis test48 was used to compare the 678 
AUC and AUPR of the methods regarding all data set combinations (TFs versus cell types). Such test 679 
provides a rank of the methods as well as the statistical significance of whether a particular method was 680 
outperformed. All correlations are based on Spearman values. All reported p-values have been corrected 681 
with the Benjamini and Hochberg method49. 682 
 683 
Code Availability. Software, custom code, benchmarking data, DNase-seq sequence bias estimates and 684 
further graphical results are available at www.costalab.org/hint-bc. The HINT, HINT-BC and HINT-BCN 685 
softwares can be directly accessed through the regulatory genomics toolbox website at www.regulatory-686 
genomics.org/hint/. 687 
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